Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8712283733917424567467912 ~2016
8712449642317424899284712 ~2016
8712955316317425910632712 ~2016
8713436540317426873080712 ~2016
8713527103117427054206312 ~2016
871363939092910...56560714 2024
8713743877752282463266312 ~2018
8713870747117427741494312 ~2016
8714241481352285448887912 ~2018
8715012685117430025370312 ~2016
8715981211117431962422312 ~2016
8716874593117433749186312 ~2016
8716987549117433975098312 ~2016
8717835547752307013286312 ~2018
8718284360317436568720712 ~2016
8719043786317438087572712 ~2016
8719332175117438664350312 ~2016
8719910448152319462688712 ~2018
8720017622317440035244712 ~2016
8720235308317440470616712 ~2016
8720583583117441167166312 ~2016
872087594091114...52470315 2025
8721285245917442570491912 ~2016
8721314708317442629416712 ~2016
8721539077117443078154312 ~2016
Exponent Prime Factor Dig. Year
8721675305352330051831912 ~2018
8721726422317443452844712 ~2016
8721780829117443561658312 ~2016
8722850732317445701464712 ~2016
8722962967169783703736912 ~2018
8723106623917446213247912 ~2016
8723452549117446905098312 ~2016
8724407851117448815702312 ~2016
872445882373475...53620915 2025
8724550328317449100656712 ~2016
8724575702317449151404712 ~2016
8724692138317449384276712 ~2016
8724706595917449413191912 ~2016
8724969884317449939768712 ~2016
8725561355917451122711912 ~2016
8725677053917451354107912 ~2016
8725949903917451899807912 ~2016
8725984769352355908615912 ~2018
8726788305752360729834312 ~2018
8727037721917454075443912 ~2016
8727963895117455927790312 ~2016
8727989653117455979306312 ~2016
8728996336769831970693712 ~2018
8729052680317458105360712 ~2016
8729118144152374708864712 ~2018
Exponent Prime Factor Dig. Year
8729297858317458595716712 ~2016
8729700931117459401862312 ~2016
8730031549117460063098312 ~2016
8730199153117460398306312 ~2016
8730751345117461502690312 ~2016
8731403899117462807798312 ~2016
8731868909917463737819912 ~2016
8732238619117464477238312 ~2016
8732250763117464501526312 ~2016
8732251331917464502663912 ~2016
8733201553117466403106312 ~2016
8733205837117466411674312 ~2016
8734026553117468053106312 ~2016
8734148311117468296622312 ~2016
8735107215752410643294312 ~2018
8735729012969885832103312 ~2018
8735784542317471569084712 ~2016
8736346291117472692582312 ~2016
8736667986152420007916712 ~2018
873692522472935...75499314 2024
8738374463917476748927912 ~2016
8738870374169910962992912 ~2018
8739593005352437558031912 ~2018
8739743697752438462186312 ~2018
8740475581769923804653712 ~2018
Exponent Prime Factor Dig. Year
8741618935117483237870312 ~2016
8742188483917484376967912 ~2016
8743110649117486221298312 ~2016
8743601089752461606538312 ~2018
8744839517917489679035912 ~2016
8744992009117489984018312 ~2016
8746558381117493116762312 ~2016
8746576652317493153304712 ~2016
8746943381917493886763912 ~2016
8747444900969979559207312 ~2018
8747449249117494898498312 ~2016
8747675345917495350691912 ~2016
8747746250317495492500712 ~2016
8748158573917496317147912 ~2016
8748711697117497423394312 ~2016
8749094282317498188564712 ~2016
8749152119352494912715912 ~2018
8749751513917499503027912 ~2016
8750521028317501042056712 ~2016
8751028310317502056620712 ~2016
8751172087117502344174312 ~2016
8751509311117503018622312 ~2016
8751725965752510355794312 ~2018
8753231993917506463987912 ~2016
8753411012317506822024712 ~2016
Home
4.828.532 digits
e-mail
25-06-01