Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8839766192317679532384712 ~2017
8839781816317679563632712 ~2017
8839955000317679910000712 ~2017
8840766635917681533271912 ~2017
8841171763117682343526312 ~2017
8841217289917682434579912 ~2017
8841696947917683393895912 ~2017
8843329985917686659971912 ~2017
8843433547753060601286312 ~2018
8843764285117687528570312 ~2017
8843842735117687685470312 ~2017
8843879984317687759968712 ~2017
8844374365117688748730312 ~2017
8844520915753067125494312 ~2018
8844791316153068747896712 ~2018
8845374029917690748059912 ~2017
8846772110317693544220712 ~2017
8847247274317694494548712 ~2017
8847663907117695327814312 ~2017
8848632704317697265408712 ~2017
8849515802317699031604712 ~2017
8850380645917700761291912 ~2017
8850819323917701638647912 ~2017
8850867944317701735888712 ~2017
8851250275117702500550312 ~2017
Exponent Prime Factor Dig. Year
8851525117117703050234312 ~2017
8852042303917704084607912 ~2017
8853294133117706588266312 ~2017
8853510104317707020208712 ~2017
8853540524317707081048712 ~2017
8853543134317707086268712 ~2017
8853756307117707512614312 ~2017
8854431968317708863936712 ~2017
8854461665917708923331912 ~2017
8854493815117708987630312 ~2017
8854811570317709623140712 ~2017
8854944511117709889022312 ~2017
8855062291117710124582312 ~2017
8855195119753131170718312 ~2018
8855238701917710477403912 ~2017
8855786716170846293728912 ~2018
8856072827917712145655912 ~2017
8856376616317712753232712 ~2017
8857099583917714199167912 ~2017
8858647863753151887182312 ~2018
8858678263117717356526312 ~2017
8860351541917720703083912 ~2017
8860949378317721898756712 ~2017
8861061164317722122328712 ~2017
8861175884317722351768712 ~2017
Exponent Prime Factor Dig. Year
8861470163917722940327912 ~2017
8861879790153171278740712 ~2018
8861976131917723952263912 ~2017
8862018505117724037010312 ~2017
8862366725917724733451912 ~2017
8862979105170903832840912 ~2018
8863624437753181746626312 ~2018
8864086021117728172042312 ~2017
8865375449917730750899912 ~2017
886557712978564...07290314 2024
8865655388317731310776712 ~2017
8865701567917731403135912 ~2017
8866766630317733533260712 ~2017
8866832695117733665390312 ~2017
8867659207117735318414312 ~2017
8867982913117735965826312 ~2017
8868488624317736977248712 ~2017
8868640439917737280879912 ~2017
8869053400770952427205712 ~2018
8869063922317738127844712 ~2017
8869798982317739597964712 ~2017
8869973651917739947303912 ~2017
8870026958317740053916712 ~2017
8870950453753225702722312 ~2018
887099115412820...87003914 2024
Exponent Prime Factor Dig. Year
8871049664317742099328712 ~2017
8871099674317742199348712 ~2017
887138383311508...51627114 2024
8871848251117743696502312 ~2017
8872046534317744093068712 ~2017
8872499378317744998756712 ~2017
8872622098153235732588712 ~2018
8873522099353241132595912 ~2018
8875357838317750715676712 ~2017
8876154833917752309667912 ~2017
8876168228317752336456712 ~2017
8876238950317752477900712 ~2017
8876818349917753636699912 ~2017
8877059888317754119776712 ~2017
8877131485117754262970312 ~2017
8877145619917754291239912 ~2017
8879182327771033458621712 ~2018
8879257625917758515251912 ~2017
8879389693117758779386312 ~2017
8880307507117760615014312 ~2017
8880615574171044924592912 ~2018
8880713249917761426499912 ~2017
8880962809117761925618312 ~2017
8881061228317762122456712 ~2017
8881327478317762654956712 ~2017
Home
4.828.532 digits
e-mail
25-06-01