Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12652207094325304414188712 ~2018
12652369127925304738255912 ~2018
12652442618325304885236712 ~2018
12652857698325305715396712 ~2018
12653273401125306546802312 ~2018
12654656792325309313584712 ~2018
12655004078325310008156712 ~2018
12655274291925310548583912 ~2018
12655677380325311354760712 ~2018
12657123611925314247223912 ~2018
12658927333775953564002312 ~2019
12659692712325319385424712 ~2018
12661178927375967073563912 ~2019
12661236032325322472064712 ~2018
12662729516325325459032712 ~2018
12664130297925328260595912 ~2018
12664324040325328648080712 ~2018
12665279463775991676782312 ~2019
12666048521925332097043912 ~2018
12666197725125332395450312 ~2018
12666935005776001610034312 ~2019
12667270766325334541532712 ~2018
12667699118325335398236712 ~2018
12668069171925336138343912 ~2018
12668277721125336555442312 ~2018
Exponent Prime Factor Dig. Year
12668530537125337061074312 ~2018
12668567297925337134595912 ~2018
12668568074325337136148712 ~2018
12668819417925337638835912 ~2018
12669124609125338249218312 ~2018
12669581317125339162634312 ~2018
1266969393711439...12545715 2025
12670309136325340618272712 ~2018
12671046149925342092299912 ~2018
12671599396176029596376712 ~2019
12672671861925345343723912 ~2018
12673322222325346644444712 ~2018
12676689649125353379298312 ~2018
12677492300325354984600712 ~2018
12677847452325355694904712 ~2018
1267808871432332...23431314 2024
12678214843125356429686312 ~2018
12679119313125358238626312 ~2018
12680127019125360254038312 ~2018
12681974405925363948811912 ~2018
12682197419925364394839912 ~2018
12682606772325365213544712 ~2018
12682909961925365819923912 ~2018
12682981555125365963110312 ~2018
12683475794325366951588712 ~2018
Exponent Prime Factor Dig. Year
12683921738325367843476712 ~2018
12685505960325371011920712 ~2018
12686137613925372275227912 ~2018
12686871710325373743420712 ~2018
12689820853376138925119912 ~2019
12691339550325382679100712 ~2018
12691854067776151124406312 ~2019
12692376515925384753031912 ~2018
12694501939125389003878312 ~2018
12695059736325390119472712 ~2018
12695065505925390131011912 ~2018
12695084699376170508195912 ~2019
12695210132325390420264712 ~2018
12695210294325390420588712 ~2018
12695564069925391128139912 ~2018
12695623904325391247808712 ~2018
12696353342325392706684712 ~2018
12696938513925393877027912 ~2018
12697307209125394614418312 ~2018
12697722204176186333224712 ~2019
12699182875125398365750312 ~2018
12699618661776197711970312 ~2019
1269986559111463...60947315 2024
12700123871925400247743912 ~2018
12700695061125401390122312 ~2018
Exponent Prime Factor Dig. Year
12700747585125401495170312 ~2018
12702046136325404092272712 ~2018
12702367753125404735506312 ~2018
12702744896325405489792712 ~2018
12702778943925405557887912 ~2018
12704223174176225339044712 ~2019
1270485077533636...18908715 2023
1270507174033862...09051314 2023
12705324703125410649406312 ~2018
12705481841925410963683912 ~2018
12706185511376237113067912 ~2019
12706536505125413073010312 ~2018
12706755038325413510076712 ~2018
12707863315125415726630312 ~2018
12708749126325417498252712 ~2018
1270956522533838...98040714 2023
12710183139776261098838312 ~2019
12710418326325420836652712 ~2018
12711248282325422496564712 ~2018
12711270953925422541907912 ~2018
12711321064176267926384712 ~2019
12712717649925425435299912 ~2018
12714091271925428182543912 ~2018
12714427885125428855770312 ~2018
12714511862325429023724712 ~2018
Home
4.783.821 digits
e-mail
25-05-11