Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8881385569353288313415912 ~2018
8881633910971053071287312 ~2018
8881637503117763275006312 ~2017
8881898432317763796864712 ~2017
8882091742171056733936912 ~2018
8882515520317765031040712 ~2017
8882860691353297164147912 ~2018
8883178021117766356042312 ~2017
8884391626153306349756712 ~2018
8885201221117770402442312 ~2017
8885523812317771047624712 ~2017
8885872406317771744812712 ~2017
8886231061117772462122312 ~2017
8886296017117772592034312 ~2017
8886382223353318293339912 ~2018
8886408668317772817336712 ~2017
8886612345753319674074312 ~2018
8888872220317777744440712 ~2017
8888962934317777925868712 ~2017
8889591001117779182002312 ~2017
8889940466317779880932712 ~2017
8890203503917780407007912 ~2017
8890255409917780510819912 ~2017
8890485221917780970443912 ~2017
8890528073353343168439912 ~2018
Exponent Prime Factor Dig. Year
8890635167917781270335912 ~2017
8891361320317782722640712 ~2017
8892279266317784558532712 ~2017
8893294513117786589026312 ~2017
8893630187917787260375912 ~2017
8894180877753365085266312 ~2018
8894654521117789309042312 ~2017
8894793029917789586059912 ~2017
8894946371917789892743912 ~2017
8895516823117791033646312 ~2017
8896108933117792217866312 ~2017
8896534913917793069827912 ~2017
8897297335753383784014312 ~2018
8897951616153387709696712 ~2018
8897982706153387896236712 ~2018
8898220040317796440080712 ~2017
8898468314317796936628712 ~2017
8899214911117798429822312 ~2017
8899808395753398850374312 ~2018
8900088758317800177516712 ~2017
8900971033353405826199912 ~2018
8901436979917802873959912 ~2017
8901612091117803224182312 ~2017
8902205567917804411135912 ~2017
8902325035353413950211912 ~2018
Exponent Prime Factor Dig. Year
8902940378317805880756712 ~2017
8903197313917806394627912 ~2017
8903288227117806576454312 ~2017
8904313061917808626123912 ~2017
8904432506317808865012712 ~2017
8904797144317809594288712 ~2017
8904859721917809719443912 ~2017
8905620902317811241804712 ~2017
8905934930317811869860712 ~2017
8906058757117812117514312 ~2017
8906146501117812293002312 ~2017
890636356034631...51356114 2024
8907043758153442262548712 ~2018
8907195063753443170382312 ~2018
8907309937117814619874312 ~2017
8909045663917818091327912 ~2017
8909082764317818165528712 ~2017
8909233645117818467290312 ~2017
8909668448317819336896712 ~2017
8909833757917819667515912 ~2017
8909916967117819833934312 ~2017
8911873940317823747880712 ~2017
8912159198317824318396712 ~2017
8912195612317824391224712 ~2017
8912537201917825074403912 ~2017
Exponent Prime Factor Dig. Year
8913226841917826453683912 ~2017
8913443870317826887740712 ~2017
8913596047117827192094312 ~2017
8914703051353488218307912 ~2018
8915310489753491862938312 ~2018
8915440577917830881155912 ~2017
8915561012317831122024712 ~2017
8916334526317832669052712 ~2017
8916340262317832680524712 ~2017
8916643463917833286927912 ~2017
8916989120317833978240712 ~2017
8917071799117834143598312 ~2017
8917561804153505370824712 ~2018
8918306617353509839703912 ~2018
8918324222317836648444712 ~2017
8918677741117837355482312 ~2017
8918900033971351200271312 ~2018
891932940173264...61022314 2024
8919736256317839472512712 ~2017
8920775453917841550907912 ~2017
8921160613117842321226312 ~2017
8921178419917842356839912 ~2017
8921975749117843951498312 ~2017
8922681179917845362359912 ~2017
8922695981353536175887912 ~2018
Home
4.828.532 digits
e-mail
25-06-01