Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17902886375935805772751912 ~2019
17903582699935807165399912 ~2019
17904350327935808700655912 ~2019
17906171743135812343486312 ~2019
17910110930335820221860712 ~2019
1791181247293439...94796914 2024
17912767237135825534474312 ~2019
17915574188335831148376712 ~2019
17915996791135831993582312 ~2019
17916018191935832036383912 ~2019
17918204804335836409608712 ~2019
17919597535135839195070312 ~2019
17921855245135843710490312 ~2019
17922766298335845532596712 ~2019
17922941108335845882216712 ~2019
17923576825135847153650312 ~2019
17926323553135852647106312 ~2019
17927801359135855602718312 ~2019
17928729145135857458290312 ~2019
17931014395135862028790312 ~2019
17931690848335863381696712 ~2019
17932011308335864022616712 ~2019
17932523125135865046250312 ~2019
17935089913135870179826312 ~2019
17935367102335870734204712 ~2019
Exponent Prime Factor Dig. Year
17935977395935871954791912 ~2019
17936374331935872748663912 ~2019
17938103507935876207015912 ~2019
17938349837935876699675912 ~2019
17938432273135876864546312 ~2019
1793874896571693...23620915 2024
17939192939935878385879912 ~2019
17941797791935883595583912 ~2019
17943423595135886847190312 ~2019
17943710581135887421162312 ~2019
17945255855935890511711912 ~2019
17948542448335897084896712 ~2019
17950131305935900262611912 ~2019
17950535429935901070859912 ~2019
1795132396132405...10814314 2024
17954892893935909785787912 ~2019
17955334145935910668291912 ~2019
1795592187772025...78045715 2025
17957283473935914566947912 ~2019
17959612331935919224663912 ~2019
17960068904335920137808712 ~2019
17961225241135922450482312 ~2019
17963941045135927882090312 ~2019
17964549776335929099552712 ~2019
17971104755935942209511912 ~2019
Exponent Prime Factor Dig. Year
17971442615935942885231912 ~2019
17973328880335946657760712 ~2019
17973520345135947040690312 ~2019
17974184425135948368850312 ~2019
17975361671935950723343912 ~2019
17976826298335953652596712 ~2019
17979942950335959885900712 ~2019
1798003123312481...10167914 2024
17980917125935961834251912 ~2019
17980952429935961904859912 ~2019
1798333641972445...53079314 2024
1798344551096294...28815114 2024
1798433738634783...44755914 2023
17984677685935969355371912 ~2019
17984875315135969750630312 ~2019
17985091921135970183842312 ~2019
17986369682335972739364712 ~2019
17986995164335973990328712 ~2019
17988112777135976225554312 ~2019
17990198407135980396814312 ~2019
17990317823935980635647912 ~2019
17990895005935981790011912 ~2019
17993775938335987551876712 ~2019
17995943539135991887078312 ~2019
17996347951135992695902312 ~2019
Exponent Prime Factor Dig. Year
17996368856335992737712712 ~2019
17996378645935992757291912 ~2019
17998053908335996107816712 ~2019
17998930529935997861059912 ~2019
18000725077136001450154312 ~2019
18000860615936001721231912 ~2019
18001190069936002380139912 ~2019
18002272382336004544764712 ~2019
18002557985936005115971912 ~2019
18003505961936007011923912 ~2019
18004105309136008210618312 ~2019
18004422925136008845850312 ~2019
1800769441615618...57823314 2024
18010171532336020343064712 ~2019
18011063564336022127128712 ~2019
18011225150336022450300712 ~2019
18011231981936022463963912 ~2019
18011756198336023512396712 ~2019
18012645925136025291850312 ~2019
18012897110336025794220712 ~2019
18013315940336026631880712 ~2019
18013750573136027501146312 ~2019
18014324021936028648043912 ~2019
18014612354336029224708712 ~2019
18018405548336036811096712 ~2019
Home
4.724.182 digits
e-mail
25-04-13