Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6074112743912148225487912 ~2015
6074408381912148816763912 ~2015
6074450263112148900526312 ~2015
6074723215112149446430312 ~2015
6074920244312149840488712 ~2015
6075005606312150011212712 ~2015
6075051572312150103144712 ~2015
6075163429748601307437712 ~2017
6075856331912151712663912 ~2015
6075942613112151885226312 ~2015
6075945821912151891643912 ~2015
6076054049912152108099912 ~2015
6076198463912152396927912 ~2015
6076215907112152431814312 ~2015
6076217263748609738109712 ~2017
6076402930148611223440912 ~2017
6076467293336458803759912 ~2016
6076557077912153114155912 ~2015
6076708841912153417683912 ~2015
6077031029912154062059912 ~2015
6077314220312154628440712 ~2015
6077647658312155295316712 ~2015
607795717912528...86505714 2023
6077999609912155999219912 ~2015
6078078141736468468850312 ~2016
Exponent Prime Factor Dig. Year
6078101564312156203128712 ~2015
6079253069912158506139912 ~2015
6079502672312159005344712 ~2015
6079576171112159152342312 ~2015
6079717745912159435491912 ~2015
6079804649912159609299912 ~2015
6079814755112159629510312 ~2015
6080350351112160700702312 ~2015
6080362981112160725962312 ~2015
6080516441912161032883912 ~2015
6080541716312161083432712 ~2015
6080701622312161403244712 ~2015
6080829290312161658580712 ~2015
6081064325912162128651912 ~2015
6081349787912162699575912 ~2015
6081375989912162751979912 ~2015
6081687439960816874399112 ~2017
6081820285336490921711912 ~2016
6082053901112164107802312 ~2015
6082369688312164739376712 ~2015
6082566245912165132491912 ~2015
6082623223112165246446312 ~2015
6082683466136496100796712 ~2016
6082712089112165424178312 ~2015
6082986737912165973475912 ~2015
Exponent Prime Factor Dig. Year
608310081234720...30344914 2024
6083591102312167182204712 ~2015
6083770069112167540138312 ~2015
6083894693912167789387912 ~2015
6083995067912167990135912 ~2015
6084010625912168021251912 ~2015
6084404921912168809843912 ~2015
6084838285112169676570312 ~2015
6085047637748680381101712 ~2017
6085409309912170818619912 ~2015
6085945921112171891842312 ~2015
6086535133112173070266312 ~2015
6086987342312173974684712 ~2015
6087052976312174105952712 ~2015
6087803119112175606238312 ~2015
6087814155736526884934312 ~2016
6087870811736527224870312 ~2016
6088098829736528592978312 ~2016
6088131553112176263106312 ~2015
6088138037912176276075912 ~2015
6088185997112176371994312 ~2015
6088709124760887091247112 ~2017
6088860634136533163804712 ~2016
6089046457112178092914312 ~2015
6089795948312179591896712 ~2015
Exponent Prime Factor Dig. Year
6090002033912180004067912 ~2015
6090422795912180845591912 ~2015
6090749912312181499824712 ~2015
6091638800312183277600712 ~2015
6091639975112183279950312 ~2015
6091776733112183553466312 ~2015
6092166825736553000954312 ~2016
6092358355112184716710312 ~2015
6092374829912184749659912 ~2015
6092706025112185412050312 ~2015
609286199331758...12663915 2024
6092972321912185944643912 ~2015
6093080429912186160859912 ~2015
6094381592312188763184712 ~2015
6094542481112189084962312 ~2015
6094878766136569272596712 ~2016
6094927399112189854798312 ~2015
6095233579112190467158312 ~2015
6096159229112192318458312 ~2015
6096744989912193489979912 ~2015
6096750223112193500446312 ~2015
6096906398312193812796712 ~2015
609692904973017...96015115 2023
6097108021736582648130312 ~2016
6097354040312194708080712 ~2015
Home
4.933.056 digits
e-mail
25-07-20