Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16859618819933719237639912 ~2019
16861648397933723296795912 ~2019
16861780135133723560270312 ~2019
16862269076333724538152712 ~2019
16862354147933724708295912 ~2019
16862836838333725673676712 ~2019
1686427858697555...06931314 2023
16865319395933730638791912 ~2019
16865587711133731175422312 ~2019
1686600757195700...59302314 2023
16866225709133732451418312 ~2019
16866338657933732677315912 ~2019
1686792385571315...60744714 2024
16868050331933736100663912 ~2019
16869263645933738527291912 ~2019
16869767090333739534180712 ~2019
16870601462333741202924712 ~2019
16873638881933747277763912 ~2019
1687398313992328...73306314 2024
16874484815933748969631912 ~2019
16874834987933749669975912 ~2019
16876855034333753710068712 ~2019
16877763506333755527012712 ~2019
1687834710611495...36004715 2023
16880332367933760664735912 ~2019
Exponent Prime Factor Dig. Year
16881172853933762345707912 ~2019
16881321278333762642556712 ~2019
16882598929133765197858312 ~2019
16883086859933766173719912 ~2019
16885865837933771731675912 ~2019
16887401615933774803231912 ~2019
16887747389933775494779912 ~2019
16889185658333778371316712 ~2019
16889199080333778398160712 ~2019
16890360991133780721982312 ~2019
16892752549133785505098312 ~2019
16895063285933790126571912 ~2019
16898709559133797419118312 ~2019
16898719025933797438051912 ~2019
16899178945133798357890312 ~2019
1690112714213481...91272714 2023
16904871986333809743972712 ~2019
1690584956771065...27651115 2023
16906341577133812683154312 ~2019
16907270395133814540790312 ~2019
16908818237933817636475912 ~2019
16910375341133820750682312 ~2019
16910884034333821768068712 ~2019
16911146461133822292922312 ~2019
16912568354333825136708712 ~2019
Exponent Prime Factor Dig. Year
16914058687133828117374312 ~2019
16915590434333831180868712 ~2019
16916374123133832748246312 ~2019
16917014611133834029222312 ~2019
16918895425133837790850312 ~2019
16919014013933838028027912 ~2019
16921889237933843778475912 ~2019
16921948880333843897760712 ~2019
16922885407133845770814312 ~2019
16923266599133846533198312 ~2019
16924405525133848811050312 ~2019
16924449839933848899679912 ~2019
16925475665933850951331912 ~2019
16927453369133854906738312 ~2019
16928619149933857238299912 ~2019
16929945692333859891384712 ~2019
16930393292333860786584712 ~2019
16931371819133862743638312 ~2019
16931600239133863200478312 ~2019
16932836869133865673738312 ~2019
1693333951093115...70005714 2024
16934695121933869390243912 ~2019
16934832710333869665420712 ~2019
16936804298333873608596712 ~2019
16937799445133875598890312 ~2019
Exponent Prime Factor Dig. Year
16939636142333879272284712 ~2019
16947836353133895672706312 ~2019
1694880104413932...42231314 2023
16948981165133897962330312 ~2019
16949151164333898302328712 ~2019
16950566269133901132538312 ~2019
16950773155133901546310312 ~2019
16951187444333902374888712 ~2019
1695222768412847...50928914 2024
16954165685933908331371912 ~2019
16954727042333909454084712 ~2019
1695481596611627...32745714 2025
1695483267371230...21106315 2025
16955584163933911168327912 ~2019
16955980327133911960654312 ~2019
16956023612333912047224712 ~2019
16956033241133912066482312 ~2019
16956664199933913328399912 ~2019
16957090891133914181782312 ~2019
16957359038333914718076712 ~2019
16957698533933915397067912 ~2019
16958664236333917328472712 ~2019
16963366166333926732332712 ~2019
1696401592639533...50580714 2025
16964098232333928196464712 ~2019
Home
4.724.182 digits
e-mail
25-04-13