Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9968445805179747566440912 ~2018
996915183133748...88568914 2024
9970393592319940787184712 ~2017
9971011823919942023647912 ~2017
9971532247119943064494312 ~2017
9971534589759829207538312 ~2018
9971793055119943586110312 ~2017
9972265511359833593067912 ~2018
9972311929119944623858312 ~2017
9972738239919945476479912 ~2017
9972851978319945703956712 ~2017
9973446023919946892047912 ~2017
9974453326779795626613712 ~2018
9974486929119948973858312 ~2017
9974640101919949280203912 ~2017
9975319144179802553152912 ~2018
9975812911119951625822312 ~2017
997676496434010...15648714 2024
9976812937119953625874312 ~2017
9976879042779815032341712 ~2018
9977334734319954669468712 ~2017
9977393036319954786072712 ~2017
9978176198319956352396712 ~2017
9978252773919956505547912 ~2017
9979185119919958370239912 ~2017
Exponent Prime Factor Dig. Year
9979381358319958762716712 ~2017
9979781933919959563867912 ~2017
9979918581759879511490312 ~2018
9980462648319960925296712 ~2017
9980534081919961068163912 ~2017
9980867009919961734019912 ~2017
9981313564159887881384712 ~2018
9982277227119964554454312 ~2017
9982308181119964616362312 ~2017
9983628650979869029207312 ~2018
9984541477119969082954312 ~2017
9985369771119970739542312 ~2017
9985448773119970897546312 ~2017
998582784312366...88147115 2023
9986661097119973322194312 ~2017
9988484756319976969512712 ~2017
9989104463919978208927912 ~2017
9989149670319978299340712 ~2017
9989727241119979454482312 ~2017
9990163421919980326843912 ~2017
9992036621919984073243912 ~2017
9992393695119984787390312 ~2017
9993551783359961310699912 ~2018
9995103128319990206256712 ~2017
9995266760319990533520712 ~2017
Exponent Prime Factor Dig. Year
9995533292319991066584712 ~2017
9995708239119991416478312 ~2017
9995839427919991678855912 ~2017
9995929499919991858999912 ~2017
9997035823119994071646312 ~2017
9997452553779979620429712 ~2018
9997621328319995242656712 ~2017
9998032451919996064903912 ~2017
9998053868319996107736712 ~2017
9998761597179990092776912 ~2018
9999328382319998656764712 ~2017
10001484597760008907586312 ~2018
10001553746320003107492712 ~2017
10002274735180018197880912 ~2018
10002982729120005965458312 ~2017
10003801423120007602846312 ~2017
10003917710320007835420712 ~2017
10004805385180038443080912 ~2018
10005371441980042971535312 ~2018
10005846997120011693994312 ~2017
10005869458160035216748712 ~2018
10006097747920012195495912 ~2017
1000629889373662...95094314 2024
10006367279920012734559912 ~2017
1000670163371158...91824715 2025
Exponent Prime Factor Dig. Year
10008131102320016262204712 ~2017
10008257393920016514787912 ~2017
10009430281120018860562312 ~2017
10010270189920020540379912 ~2017
10010301461920020602923912 ~2017
10010563393120021126786312 ~2017
10010781739120021563478312 ~2017
10010952643120021905286312 ~2017
10011218981920022437963912 ~2017
10011731126320023462252712 ~2017
10012362200320024724400712 ~2017
10012548578320025097156712 ~2017
10012705454320025410908712 ~2017
10013727007120027454014312 ~2017
10014406105120028812210312 ~2017
10014668825920029337651912 ~2017
10014904249120029808498312 ~2017
10016440727920032881455912 ~2017
10016459653120032919306312 ~2017
10016581627780132653021712 ~2018
10017287527760103725166312 ~2018
10017568583920035137167912 ~2017
10018206668320036413336712 ~2017
10018210643920036421287912 ~2017
10018366118320036732236712 ~2017
Home
4.828.532 digits
e-mail
25-06-01