Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6503852173113007704346312 ~2015
6504189425913008378851912 ~2015
6504663346139027980076712 ~2017
6505182247113010364494312 ~2015
6505586165913011172331912 ~2015
6505990651113011981302312 ~2015
6506193070152049544560912 ~2017
6506413880313012827760712 ~2015
6506425756139038554536712 ~2017
6506434940313012869880712 ~2015
6506580818313013161636712 ~2015
6506659762152053278096912 ~2017
6506991821913013983643912 ~2015
6507363012139044178072712 ~2017
6507450038313014900076712 ~2015
6507973067952063784543312 ~2017
6508179512313016359024712 ~2015
6508330988313016661976712 ~2015
6508643057339051858343912 ~2017
6508727528313017455056712 ~2015
6508767192139052603152712 ~2017
6509178860313018357720712 ~2015
6509850557913019701115912 ~2015
6510078533913020157067912 ~2015
6511157639913022315279912 ~2015
Exponent Prime Factor Dig. Year
6511318910952090551287312 ~2017
6511618583913023237167912 ~2015
6511662162139069972972712 ~2017
6511966969113023933938312 ~2015
6512006456313024012912712 ~2015
6512277376139073664256712 ~2017
6512362597113024725194312 ~2015
6512439547152099516376912 ~2017
6512488237739074929426312 ~2017
6512841374313025682748712 ~2015
6512939918313025879836712 ~2015
6513391084752107128677712 ~2017
6514758283339088549699912 ~2017
6514916636313029833272712 ~2015
6514997522313029995044712 ~2015
6515095392765150953927112 ~2017
6515257021339091542127912 ~2017
6515261072313030522144712 ~2015
6515304691113030609382312 ~2015
6515704229913031408459912 ~2015
6515975294313031950588712 ~2015
6516464437113032928874312 ~2015
6516628546139099771276712 ~2017
6516860813339101164879912 ~2017
6516961417113033922834312 ~2015
Exponent Prime Factor Dig. Year
6517027685913034055371912 ~2015
6517416573739104499442312 ~2017
6517880495913035760991912 ~2015
6518269076313036538152712 ~2015
6518359328313036718656712 ~2015
6518712923913037425847912 ~2015
6518783269113037566538312 ~2015
6518786695113037573390312 ~2015
6519186805113038373610312 ~2015
6519930350313039860700712 ~2015
6520147141113040294282312 ~2015
6520900701165209007011112 ~2017
6521072582313042145164712 ~2015
652118030533012...01048714 2023
6521385773913042771547912 ~2015
6521387729913042775459912 ~2015
6521395945113042791890312 ~2015
6521866483113043732966312 ~2015
6521965504139131793024712 ~2017
6523108465113046216930312 ~2015
6523571786313047143572712 ~2015
6523713362313047426724712 ~2015
6524491483113048982966312 ~2015
6525073787339150442723912 ~2017
6525128072313050256144712 ~2015
Exponent Prime Factor Dig. Year
6525255827913050511655912 ~2015
652559058232350...77444715 2025
6526456147113052912294312 ~2015
6526851326313053702652712 ~2015
6527333203113054666406312 ~2015
6527646727113055293454312 ~2015
6528124597739168747586312 ~2017
6528596498313057192996712 ~2015
6528657905339171947431912 ~2017
6528749837913057499675912 ~2015
6528889945113057779890312 ~2015
6529120538313058241076712 ~2015
6529559665113059119330312 ~2015
6529748779113059497558312 ~2015
6529749074313059498148712 ~2015
6529839113339179034679912 ~2017
6530379985339182279911912 ~2017
6530523535113061047070312 ~2015
6530846372313061692744712 ~2015
6530861300313061722600712 ~2015
6531371923113062743846312 ~2015
6531470377113062940754312 ~2015
6531519847739189119086312 ~2017
6532375225113064750450312 ~2015
6532578845913065157691912 ~2015
Home
4.933.056 digits
e-mail
25-07-20