Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10018927093120037854186312 ~2017
10018929019120037858038312 ~2017
10019329694320038659388712 ~2017
10019344565920038689131912 ~2017
10019973674320039947348712 ~2017
10020826711120041653422312 ~2017
10021200973120042401946312 ~2017
10021766066320043532132712 ~2017
10021875317920043750635912 ~2017
10022457565120044915130312 ~2017
1002455279892385...66138314 2024
10025203100320050406200712 ~2017
10025237420320050474840712 ~2017
10026843595120053687190312 ~2017
10029599503120059199006312 ~2017
10029689242780237513941712 ~2018
10029985847920059971695912 ~2017
10030159169920060318339912 ~2017
10030308835120060617670312 ~2017
10030736222320061472444712 ~2017
10031003117920062006235912 ~2017
10031165705920062331411912 ~2017
10031998412320063996824712 ~2017
10032259295920064518591912 ~2017
10032606185980260849487312 ~2018
Exponent Prime Factor Dig. Year
10033924855360203549131912 ~2018
10034916008320069832016712 ~2017
10035038623120070077246312 ~2017
10035667265920071334531912 ~2017
10036774553920073549107912 ~2017
10037238631120074477262312 ~2017
10037513129920075026259912 ~2017
10037956242160227737452712 ~2018
10039296785920078593571912 ~2017
10039607911120079215822312 ~2017
10039804496320079608992712 ~2017
10039889321920079778643912 ~2017
10040327498980322619991312 ~2018
10040729420320081458840712 ~2017
10043314009120086628018312 ~2017
10043444905120086889810312 ~2017
10044344083780354752669712 ~2018
10044530098780356240789712 ~2018
10044836152180358689216912 ~2018
10045230187120090460374312 ~2017
10045742080160274452480712 ~2018
10046435171920092870343912 ~2017
1004667783192752...25940714 2025
10046888618320093777236712 ~2017
10046951243920093902487912 ~2017
Exponent Prime Factor Dig. Year
10047116864320094233728712 ~2017
10048473877120096947754312 ~2017
10049569885120099139770312 ~2017
10049609911360297659467912 ~2018
10050755497120101510994312 ~2017
10051084645120102169290312 ~2017
10051615195120103230390312 ~2017
10052291380160313748280712 ~2018
10052859271120105718542312 ~2017
10053181978180425455824912 ~2018
10053204697780425637581712 ~2018
1005332074131347...79334314 2024
10054261567120108523134312 ~2017
10054939453120109878906312 ~2017
10055409253360332455519912 ~2018
10056254585920112509171912 ~2017
10056415865920112831731912 ~2017
10056446510320112893020712 ~2017
10058893268320117786536712 ~2017
10059913324780479306597712 ~2018
10060108714160360652284712 ~2018
10061296520320122593040712 ~2017
10061675701120123351402312 ~2017
10062076633120124153266312 ~2017
10062092279920124184559912 ~2017
Exponent Prime Factor Dig. Year
10062284545120124569090312 ~2017
10062391944160374351664712 ~2018
10062447419920124894839912 ~2017
10063167812320126335624712 ~2017
10063606979920127213959912 ~2017
10064769221360388615327912 ~2018
1006500269777649...50252114 2025
10065083071120130166142312 ~2017
10065134630320130269260712 ~2017
10066016291920132032583912 ~2017
10066308526780530468213712 ~2018
10066423694320132847388712 ~2017
10066576093120133152186312 ~2017
10066602469120133204938312 ~2017
10066707133120133414266312 ~2017
10066865515120133731030312 ~2017
10067043575920134087151912 ~2017
10067057383120134114766312 ~2017
10068834829780550678637712 ~2018
10069155529120138311058312 ~2017
10069312765120138625530312 ~2017
10069349239120138698478312 ~2017
1006938415692295...77732115 2025
10069855532320139711064712 ~2017
10069927853920139855707912 ~2017
Home
4.828.532 digits
e-mail
25-06-01