Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11396624816322793249632712 ~2017
11396764043922793528087912 ~2017
11397351752322794703504712 ~2017
11397757927768386547566312 ~2019
11397921545922795843091912 ~2017
11398338169122796676338312 ~2017
11398998407922797996815912 ~2017
11399400512322798801024712 ~2017
11399688965922799377931912 ~2017
11399730338322799460676712 ~2017
11399892032322799784064712 ~2017
11401191119922802382239912 ~2017
11401344509922802689019912 ~2017
11401677959922803355919912 ~2017
11402131631922804263263912 ~2017
11402330522322804661044712 ~2017
11402354215122804708430312 ~2017
11403237842322806475684712 ~2017
11403383015922806766031912 ~2017
11403403250322806806500712 ~2017
11403412499922806824999912 ~2017
11404329848322808659696712 ~2017
11404613138322809226276712 ~2017
11404806164322809612328712 ~2017
11406610538322813221076712 ~2017
Exponent Prime Factor Dig. Year
11406792458322813584916712 ~2017
11406845314168441071884712 ~2019
11407868495922815736991912 ~2017
11409696734322819393468712 ~2017
11410769085768464614514312 ~2019
11412247766322824495532712 ~2017
11412900133122825800266312 ~2017
11413214480322826428960712 ~2017
11415199319922830398639912 ~2017
11415435504168492613024712 ~2019
11416322585922832645171912 ~2017
11416740025122833480050312 ~2017
11417472221922834944443912 ~2017
11417985793122835971586312 ~2017
11418004872168508029232712 ~2019
11418148519122836297038312 ~2017
11418509367768511056206312 ~2019
1141992145677126...88980914 2024
11420032151368520192907912 ~2019
11420678297922841356595912 ~2017
11421231014322842462028712 ~2017
11421286177122842572354312 ~2017
11421584624322843169248712 ~2017
11422229057922844458115912 ~2017
11422363058322844726116712 ~2017
Exponent Prime Factor Dig. Year
11423560069122847120138312 ~2017
11425802429922851604859912 ~2017
11426790509922853581019912 ~2017
11427050599122854101198312 ~2017
11427127843122854255686312 ~2017
11428214005122856428010312 ~2017
11428497167922856994335912 ~2017
11430368918322860737836712 ~2017
11430802874322861605748712 ~2017
11432035127922864070255912 ~2017
11433506195922867012391912 ~2017
11433639326322867278652712 ~2017
11434016347122868032694312 ~2017
11434349195922868698391912 ~2017
11434524325368607145951912 ~2019
11435480573922870961147912 ~2017
11435643485922871286971912 ~2017
11435800430322871600860712 ~2017
11435988725922871977451912 ~2017
11436659297922873318595912 ~2017
11436660461922873320923912 ~2017
11437043090322874086180712 ~2017
11437733153922875466307912 ~2017
11438431688322876863376712 ~2017
11438445977922876891955912 ~2017
Exponent Prime Factor Dig. Year
11438658512322877317024712 ~2017
11441863142322883726284712 ~2017
1144403404392655...98184914 2024
11444136103122888272206312 ~2017
11444823559122889647118312 ~2017
11444862062322889724124712 ~2017
11445168202168671009212712 ~2019
11445257951922890515903912 ~2017
11445534097122891068194312 ~2017
11445721673922891443347912 ~2017
11445723668322891447336712 ~2017
11448804689922897609379912 ~2017
11448827647122897655294312 ~2017
11449474109922898948219912 ~2017
11449930639122899861278312 ~2017
11450392700322900785400712 ~2017
11451203202168707219212712 ~2019
1145198273992496...37298314 2024
11452408040322904816080712 ~2017
11452593806322905187612712 ~2017
11452993047768717958286312 ~2019
11453247698322906495396712 ~2017
11453377286322906754572712 ~2017
11454120827922908241655912 ~2017
11455185169122910370338312 ~2017
Home
4.724.182 digits
e-mail
25-04-13