Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10070131093780561048749712 ~2018
10070273998780562191989712 ~2018
1007033318031450...77963314 2024
10071929472160431576832712 ~2018
10072188827920144377655912 ~2017
10072528712980580229703312 ~2018
10073889067120147778134312 ~2017
10073890625920147781251912 ~2017
10073925691120147851382312 ~2017
10074923377120149846754312 ~2017
10075576517920151153035912 ~2017
10075847372320151694744712 ~2017
10075953962320151907924712 ~2017
10076036951920152073903912 ~2017
10077532457920155064915912 ~2017
10078660787920157321575912 ~2017
10079020709920158041419912 ~2017
10079542435120159084870312 ~2017
10081267105120162534210312 ~2017
10081525705120163051410312 ~2017
10082741747920165483495912 ~2017
10084300580320168601160712 ~2017
10084974913120169949826312 ~2017
10085198666320170397332712 ~2017
10085380442320170760884712 ~2017
Exponent Prime Factor Dig. Year
10086819773920173639547912 ~2017
10087790873920175581747912 ~2017
10087940297920175880595912 ~2017
10089461174320178922348712 ~2017
10090211971120180423942312 ~2017
10090388125120180776250312 ~2017
10090976864320181953728712 ~2017
10091227172320182454344712 ~2017
10093883293120187766586312 ~2017
10094545447120189090894312 ~2017
10094872469920189744939912 ~2017
10095019081120190038162312 ~2017
1009548091193573...42812714 2023
10096887863920193775727912 ~2017
10097311617760583869706312 ~2018
10097829941920195659883912 ~2017
10097987911120195975822312 ~2017
10098225362320196450724712 ~2017
10098541889920197083779912 ~2017
10098568244320197136488712 ~2017
10099026041920198052083912 ~2017
10099742972320199485944712 ~2017
1009981811535009...85188914 2024
10100287460320200574920712 ~2017
10101192007120202384014312 ~2017
Exponent Prime Factor Dig. Year
10101434907760608609446312 ~2018
10101539273920203078547912 ~2017
10102110865120204221730312 ~2017
10102995433120205990866312 ~2017
10103023232320206046464712 ~2017
10104318752320208637504712 ~2017
10104896563120209793126312 ~2017
10105349051920210698103912 ~2017
10105747657120211495314312 ~2017
10106018387920212036775912 ~2017
10106453323760638719942312 ~2018
10106652101920213304203912 ~2017
10106760089920213520179912 ~2017
10106915760160641494560712 ~2018
10106997879760641987278312 ~2018
10107455047120214910094312 ~2017
10107930133120215860266312 ~2017
10108532017360651192103912 ~2018
10108897183120217794366312 ~2017
10109837732320219675464712 ~2017
10109919656320219839312712 ~2017
10110059720320220119440712 ~2017
10110351587920220703175912 ~2017
10111806167920223612335912 ~2017
10112285903920224571807912 ~2017
Exponent Prime Factor Dig. Year
10112407633120224815266312 ~2017
10112753457760676520746312 ~2018
10113687907120227375814312 ~2017
10114793642320229587284712 ~2017
10115543459920231086919912 ~2017
10116272405920232544811912 ~2017
10116483206320232966412712 ~2017
10116603403120233206806312 ~2017
10116934172320233868344712 ~2017
10117316593760703899562312 ~2018
10117898648320235797296712 ~2017
10118149267360708895603912 ~2018
10118385733120236771466312 ~2017
10119623347120239246694312 ~2017
10120568512160723411072712 ~2018
10121049369760726296218312 ~2018
10121758004320243516008712 ~2017
10121947129120243894258312 ~2017
10123352543920246705087912 ~2017
1012342032232429...77352114 2024
10124445997120248891994312 ~2017
10125982921360755897527912 ~2018
10126021187920252042375912 ~2017
10126050427360756302563912 ~2018
10126055022160756330132712 ~2018
Home
4.828.532 digits
e-mail
25-06-01