Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1023984532214730...38810314 2024
10240828309120481656618312 ~2017
10241848909120483697818312 ~2017
10242018697120484037394312 ~2017
10242908431120485816862312 ~2017
10243572421120487144842312 ~2017
10243706588320487413176712 ~2017
10244438303920488876607912 ~2017
10244542292320489084584712 ~2017
10244967917920489935835912 ~2017
10246103036320492206072712 ~2017
10246901827120493803654312 ~2017
10247793732161486762392712 ~2018
10249492673920498985347912 ~2017
10250025409120500050818312 ~2017
10250345869761502075218312 ~2018
10250577227920501154455912 ~2017
10250824916320501649832712 ~2017
10250846179361505077075912 ~2018
10251274979920502549959912 ~2017
10251717632320503435264712 ~2017
10251972725920503945451912 ~2017
10251993067120503986134312 ~2017
10252005319361512031915912 ~2018
10252043633920504087267912 ~2017
Exponent Prime Factor Dig. Year
10252194413920504388827912 ~2017
10252864669120505729338312 ~2017
10253340461920506680923912 ~2017
10253825753920507651507912 ~2017
10255036131761530216790312 ~2018
10255073378320510146756712 ~2017
10255209931120510419862312 ~2017
10255424702320510849404712 ~2017
10255449731920510899463912 ~2017
10255620770320511241540712 ~2017
10256149015120512298030312 ~2017
10256384479120512768958312 ~2017
10256581898320513163796712 ~2017
10256885504320513771008712 ~2017
10257215491361543292947912 ~2018
10257657687761545946126312 ~2018
10259790224320519580448712 ~2017
1026007636139993...75906314 2025
10260597755920521195511912 ~2017
10260624781361563748687912 ~2018
10260973538320521947076712 ~2017
10261361105920522722211912 ~2017
10262187056320524374112712 ~2017
10262690275361576141651912 ~2018
10263476780320526953560712 ~2017
Exponent Prime Factor Dig. Year
10263971347120527942694312 ~2017
10264833839920529667679912 ~2017
10264897601920529795203912 ~2017
10265310587361591863523912 ~2018
10265325413920530650827912 ~2017
10265639150320531278300712 ~2017
10266175997920532351995912 ~2017
1026624810011962...67391315 2025
10266349361361598096167912 ~2018
10266446693920532893387912 ~2017
10267334105920534668211912 ~2017
10267547773120535095546312 ~2017
10267695104320535390208712 ~2017
10267750712320535501424712 ~2017
10268081189920536162379912 ~2017
10268319943120536639886312 ~2017
10268369984320536739968712 ~2017
10269129541120538259082312 ~2017
10269852188320539704376712 ~2017
10270678946320541357892712 ~2017
1027106049374354...49328914 2023
10272174989920544349979912 ~2017
10272252176320544504352712 ~2017
10272798767920545597535912 ~2017
10272864781120545729562312 ~2017
Exponent Prime Factor Dig. Year
10273450615120546901230312 ~2017
10273674865120547349730312 ~2017
10274718729761648312378312 ~2018
10274790575920549581151912 ~2017
10275577955920551155911912 ~2017
10276239530320552479060712 ~2017
10276659584320553319168712 ~2017
10277246484161663478904712 ~2018
10277370089920554740179912 ~2017
10277597637761665585826312 ~2018
10277770079920555540159912 ~2017
10279558421920559116843912 ~2017
10279631489920559262979912 ~2017
1027985994672467...87208114 2024
10280145908320560291816712 ~2017
10281317357920562634715912 ~2017
10281666967120563333934312 ~2017
10282098387761692590326312 ~2018
10282176115120564352230312 ~2017
10283276767120566553534312 ~2017
10283341421920566682843912 ~2017
10283834633920567669267912 ~2017
1028408046532612...38186314 2024
10284937237120569874474312 ~2017
10285767095920571534191912 ~2017
Home
4.828.532 digits
e-mail
25-06-01