Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20793686498341587372996712 ~2019
20794664048341589328096712 ~2019
20795095058341590190116712 ~2019
20795632453141591264906312 ~2019
2079565237072370...70259914 2024
20797276019941594552039912 ~2019
20798290073941596580147912 ~2019
20799894829141599789658312 ~2019
20800627304341601254608712 ~2019
20803321825141606643650312 ~2019
20804405783941608811567912 ~2019
20807254019941614508039912 ~2019
20808154861141616309722312 ~2019
20814215312341628430624712 ~2019
20814646945141629293890312 ~2019
2081502691792539...83983914 2024
20822858348341645716696712 ~2019
20826566903941653133807912 ~2019
2082744065831882...55103315 2023
20828422253941656844507912 ~2019
20829130441141658260882312 ~2019
20831685164341663370328712 ~2019
2083232640911499...01455314 2024
20833841005141667682010312 ~2019
2083467911176850...19269715 2025
Exponent Prime Factor Dig. Year
20835272507941670545015912 ~2019
2083621819317042...49267914 2023
20837398088341674796176712 ~2019
20842723663141685447326312 ~2019
20843224639141686449278312 ~2019
20844261341941688522683912 ~2019
20849725562341699451124712 ~2019
20852436131941704872263912 ~2019
20853017774341706035548712 ~2019
20853960439141707920878312 ~2019
20854269530341708539060712 ~2019
20859712517941719425035912 ~2019
20860537175941721074351912 ~2019
20861624141941723248283912 ~2019
20862124769941724249539912 ~2019
20864487025141728974050312 ~2019
20870397779941740795559912 ~2019
20871362707141742725414312 ~2019
20876453432341752906864712 ~2019
20876887319941753774639912 ~2019
2087754221173507...91565714 2024
20879806151941759612303912 ~2019
2088049903372630...78246314 2024
20880797623141761595246312 ~2019
2088194325432380...30990314 2024
Exponent Prime Factor Dig. Year
20884050230341768100460712 ~2019
20884075025941768150051912 ~2019
20884846141141769692282312 ~2019
20885726425141771452850312 ~2019
2088586458371750...21140715 2023
20888314961941776629923912 ~2019
20889512225941779024451912 ~2019
20890921040341781842080712 ~2019
20891527142341783054284712 ~2019
20892805087141785610174312 ~2019
20895203321941790406643912 ~2019
20897299187941794598375912 ~2019
20897569489141795138978312 ~2019
20898292964341796585928712 ~2019
20899210403941798420807912 ~2019
20899828681141799657362312 ~2019
20901313514341802627028712 ~2019
20904834823141809669646312 ~2019
20909615513941819231027912 ~2019
20910023009941820046019912 ~2019
20910026165941820052331912 ~2019
20910551615941821103231912 ~2019
20910601694341821203388712 ~2019
20910844099141821688198312 ~2019
2091228412995228...32475114 2023
Exponent Prime Factor Dig. Year
20913158617141826317234312 ~2019
20913206999941826413999912 ~2019
20913413501941826827003912 ~2019
2091381049331100...19475915 2025
20915709974341831419948712 ~2019
20916009373141832018746312 ~2019
20916411433141832822866312 ~2019
20917900249141835800498312 ~2019
20919145429141838290858312 ~2019
20920703276341841406552712 ~2019
20923934149141847868298312 ~2019
20931763265941863526531912 ~2019
20931768509941863537019912 ~2019
20932720747141865441494312 ~2019
20932890419941865780839912 ~2019
20935349333941870698667912 ~2019
20936999815141873999630312 ~2019
20938220801941876441603912 ~2019
20938243123141876486246312 ~2019
20940197789941880395579912 ~2019
20941273964341882547928712 ~2019
2094165608171465...25719114 2024
20947476167941894952335912 ~2019
20949146903941898293807912 ~2019
20951204233141902408466312 ~2019
Home
4.724.182 digits
e-mail
25-04-13