Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20953077392341906154784712 ~2019
20953948447141907896894312 ~2019
2095458571211253...55835915 2025
20955265751941910531503912 ~2019
20956064222341912128444712 ~2019
20956535762341913071524712 ~2019
20957956633141915913266312 ~2019
20958300281941916600563912 ~2019
20958712028341917424056712 ~2019
20961092462341922184924712 ~2019
20962729856341925459712712 ~2019
20963773604341927547208712 ~2019
20965130204341930260408712 ~2019
20965576219141931152438312 ~2019
20966607488341933214976712 ~2019
20966919247141933838494312 ~2019
20967070769941934141539912 ~2019
20967180851941934361703912 ~2019
20972531681941945063363912 ~2019
20973004903141946009806312 ~2019
20974137992341948275984712 ~2019
20974213825141948427650312 ~2019
20974220845141948441690312 ~2019
20976682795141953365590312 ~2019
20977149824341954299648712 ~2019
Exponent Prime Factor Dig. Year
20978522971141957045942312 ~2019
20981798635141963597270312 ~2019
20982750067141965500134312 ~2019
20985582269941971164539912 ~2019
20986907282341973814564712 ~2019
20990428310341980856620712 ~2019
20990795785141981591570312 ~2019
20991369313141982738626312 ~2019
20991730747141983461494312 ~2019
20992540004341985080008712 ~2019
20992818203941985636407912 ~2019
20992987147141985974294312 ~2019
20993887301941987774603912 ~2019
20995589504341991179008712 ~2019
20999560850341999121700712 ~2019
2100241520171848...37749714 2024
21004456873142008913746312 ~2019
21005533241942011066483912 ~2019
2100735680992184...08229714 2024
21008470393142016940786312 ~2019
21013425401942026850803912 ~2019
21014415043142028830086312 ~2019
21015059219942030118439912 ~2019
21015286277942030572555912 ~2019
21016282553942032565107912 ~2019
Exponent Prime Factor Dig. Year
21016916828342033833656712 ~2019
21018155375942036310751912 ~2019
21018517868342037035736712 ~2019
21019451929142038903858312 ~2019
21019898411942039796823912 ~2019
21021467132342042934264712 ~2019
21023120318342046240636712 ~2019
21023915294342047830588712 ~2019
2102481807118956...98288714 2023
21025289519942050579039912 ~2019
21027385193942054770387912 ~2019
21030385658342060771316712 ~2019
21031987904342063975808712 ~2019
21033385409942066770819912 ~2019
21036571291142073142582312 ~2019
2103670478111804...02183915 2024
2103763739034922...49330314 2023
21038153381942076306763912 ~2019
21039066677942078133355912 ~2019
2103927482832735...27679114 2024
21042523991942085047983912 ~2019
21043300193942086600387912 ~2019
2104576561091515...23984914 2024
21048684865142097369730312 ~2019
21049197155942098394311912 ~2019
Exponent Prime Factor Dig. Year
21050163589142100327178312 ~2019
21051944779142103889558312 ~2019
21052950001142105900002312 ~2019
21054021031142108042062312 ~2019
21055551296342111102592712 ~2019
21057376826342114753652712 ~2019
21057764357942115528715912 ~2019
21060566009942121132019912 ~2019
21062113699142124227398312 ~2019
21066016718342132033436712 ~2019
21067356224342134712448712 ~2019
21067746554342135493108712 ~2019
21069673085942139346171912 ~2019
21072452899142144905798312 ~2019
21075961789142151923578312 ~2019
21076986391142153972782312 ~2019
21078900014342157800028712 ~2019
2108040341271167...90635915 2023
21081428363942162856727912 ~2019
21084367939142168735878312 ~2019
21085237885142170475770312 ~2019
21086998255142173996510312 ~2019
21087557669942175115339912 ~2019
21087990817142175981634312 ~2019
21088861046342177722092712 ~2019
Home
4.724.182 digits
e-mail
25-04-13