Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11606151222169636907332712 ~2019
11606729282323213458564712 ~2017
11607232043923214464087912 ~2017
11607335735923214671471912 ~2017
1160754269693342...96707314 2023
11608208793769649252762312 ~2019
11608473336169650840016712 ~2019
11609253361123218506722312 ~2017
11609399873923218799747912 ~2017
11609801648323219603296712 ~2017
11610060343123220120686312 ~2017
11610277517923220555035912 ~2017
11610892459369665354755912 ~2019
11611088951923222177903912 ~2017
1161209977791117...86339915 2025
11612141138323224282276712 ~2017
11612468912323224937824712 ~2017
11613455531923226911063912 ~2017
11613648739123227297478312 ~2017
11613734017123227468034312 ~2017
11614072816169684436896712 ~2019
11615238114169691428684712 ~2019
11615545790323231091580712 ~2017
11616062392169696374352712 ~2019
11616423554323232847108712 ~2017
Exponent Prime Factor Dig. Year
11616894343123233788686312 ~2017
11617221107923234442215912 ~2017
11618909913769713459482312 ~2019
11619001130323238002260712 ~2017
11619732066169718392396712 ~2019
11620068581923240137163912 ~2017
11620676882323241353764712 ~2017
11622929256169737575536712 ~2019
11624261645923248523291912 ~2017
11624480021923248960043912 ~2017
11625702428323251404856712 ~2017
11625984251923251968503912 ~2017
11626108621123252217242312 ~2017
11626248583123252497166312 ~2017
11626710089923253420179912 ~2017
11626776049123253552098312 ~2017
11626805293123253610586312 ~2017
11627159645923254319291912 ~2017
11627310055123254620110312 ~2017
11627340073123254680146312 ~2017
11628059810323256119620712 ~2017
11630011579123260023158312 ~2017
11630055278323260110556712 ~2017
11630229980323260459960712 ~2017
11630929109923261858219912 ~2017
Exponent Prime Factor Dig. Year
11631713606323263427212712 ~2017
11631773431123263546862312 ~2017
11631915017923263830035912 ~2017
11632295177923264590355912 ~2017
11632573721923265147443912 ~2017
11632743155369796458931912 ~2019
11632911487123265822974312 ~2017
11633317523923266635047912 ~2017
11633454464323266908928712 ~2017
11635410731923270821463912 ~2017
11635546331923271092663912 ~2017
11635887067123271774134312 ~2017
11636014453123272028906312 ~2017
11636323841923272647683912 ~2017
11637002875123274005750312 ~2017
11639609017769837654106312 ~2019
11639988923923279977847912 ~2017
11640028631923280057263912 ~2017
1164010140837286...81595914 2023
11641665878323283331756712 ~2017
11641868990323283737980712 ~2017
11642471065769854826394312 ~2019
11643106565923286213131912 ~2017
11643915967123287831934312 ~2017
11644508132323289016264712 ~2017
Exponent Prime Factor Dig. Year
11644594207123289188414312 ~2017
11644940456323289880912712 ~2017
11645714849923291429699912 ~2017
11646244892323292489784712 ~2017
11646419707123292839414312 ~2017
1164647193799654...65191115 2025
11647520330323295040660712 ~2017
11648052356323296104712712 ~2017
11648066205769888397234312 ~2019
11648112335923296224671912 ~2017
11649015110323298030220712 ~2017
11649560372323299120744712 ~2017
11649760364323299520728712 ~2017
11649780181123299560362312 ~2017
11650528967923301057935912 ~2017
11650882433923301764867912 ~2017
11651162951923302325903912 ~2017
11651175289369907051735912 ~2019
11651719835923303439671912 ~2017
11652370616323304741232712 ~2017
11652485366323304970732712 ~2017
11652749207923305498415912 ~2017
11654009395123308018790312 ~2017
11654074997369924449983912 ~2019
11654584495123309168990312 ~2017
Home
4.828.532 digits
e-mail
25-06-01