Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11554492715923108985431912 ~2017
11554898706169329392236712 ~2019
11555021501923110043003912 ~2017
11555048981923110097963912 ~2017
11555389643923110779287912 ~2017
1155694205291017...06552115 2025
1155753047512427...99771114 2024
11557559329123115118658312 ~2017
11558933345923117866691912 ~2017
11562423241123124846482312 ~2017
11563095170323126190340712 ~2017
11563204859369379229155912 ~2019
11563460395123126920790312 ~2017
11564012081923128024163912 ~2017
11564142658169384855948712 ~2019
11564883074323129766148712 ~2017
11564886350323129772700712 ~2017
11565022117123130044234312 ~2017
11566236899923132473799912 ~2017
11566582069123133164138312 ~2017
11568324371923136648743912 ~2017
11569290752323138581504712 ~2017
11569520339923139040679912 ~2017
11569660619923139321239912 ~2017
11569929655123139859310312 ~2017
Exponent Prime Factor Dig. Year
11569953677923139907355912 ~2017
11570405870323140811740712 ~2017
11570665625923141331251912 ~2017
11570864131769425184790312 ~2019
11571282164323142564328712 ~2017
11571388664323142777328712 ~2017
11571652697923143305395912 ~2017
11571761179123143522358312 ~2017
11571775352323143550704712 ~2017
11573095425769438572554312 ~2019
11573153600323146307200712 ~2017
11573242961923146485923912 ~2017
11573431681123146863362312 ~2017
11573812310323147624620712 ~2017
11574365519369446193115912 ~2019
11574983041123149966082312 ~2017
11576019203923152038407912 ~2017
11576900709769461404258312 ~2019
11577613946323155227892712 ~2017
11577872947123155745894312 ~2017
11579174771923158349543912 ~2017
11579478647923158957295912 ~2017
11579736547123159473094312 ~2017
11579911301923159822603912 ~2017
11580495866323160991732712 ~2017
Exponent Prime Factor Dig. Year
11584615928323169231856712 ~2017
11586540583769519243502312 ~2019
11586579269923173158539912 ~2017
11586965718169521794308712 ~2019
11587626763123175253526312 ~2017
11588157080323176314160712 ~2017
11588324672323176649344712 ~2017
11589233972323178467944712 ~2017
11589611779123179223558312 ~2017
11589728062169538368372712 ~2019
11589871052323179742104712 ~2017
11591223706169547342236712 ~2019
11591981336323183962672712 ~2017
11592617465923185234931912 ~2017
11592724933123185449866312 ~2017
11593121429923186242859912 ~2017
11593275002323186550004712 ~2017
11593432951769560597710312 ~2019
11593445641123186891282312 ~2017
11593813687123187627374312 ~2017
11594305538323188611076712 ~2017
11594379103123188758206312 ~2017
11594623091923189246183912 ~2017
11595157153123190314306312 ~2017
11595276511123190553022312 ~2017
Exponent Prime Factor Dig. Year
11595388472323190776944712 ~2017
11595454574323190909148712 ~2017
11596005371923192010743912 ~2017
11596225817923192451635912 ~2017
11598165823123196331646312 ~2017
11598177025123196354050312 ~2017
11598285313123196570626312 ~2017
11598877361923197754723912 ~2017
11599057855123198115710312 ~2017
11599265881123198531762312 ~2017
11599920062323199840124712 ~2017
11601079841923202159683912 ~2017
11601238063769607428382312 ~2019
11601358385923202716771912 ~2017
11601407812169608446872712 ~2019
11601616295923203232591912 ~2017
11602217618323204435236712 ~2017
11602444304323204888608712 ~2017
11602493441923204986883912 ~2017
11602917305369617503831912 ~2019
11602948603769617691622312 ~2019
11603729467123207458934312 ~2017
11604881413123209762826312 ~2017
11606017358323212034716712 ~2017
11606129723923212259447912 ~2017
Home
4.828.532 digits
e-mail
25-06-01