Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11844514751923689029503912 ~2017
11844612483771067674902312 ~2019
11845034302171070205812712 ~2019
1184694832432843...97832114 2024
11847264392323694528784712 ~2018
11848475546323696951092712 ~2018
11849272681123698545362312 ~2018
11850884810323701769620712 ~2018
11851961765923703923531912 ~2018
11852116212171112697272712 ~2019
11852724347923705448695912 ~2018
11852959753123705919506312 ~2018
11853534242323707068484712 ~2018
11853675903771122055422312 ~2019
11853852301123707704602312 ~2018
11854704079123709408158312 ~2018
11855535326323711070652712 ~2018
11857982909923715965819912 ~2018
11859349369123718698738312 ~2018
11859812635123719625270312 ~2018
1185999861617021...80731314 2024
11860576837771163461026312 ~2019
11861034157123722068314312 ~2018
11861673367123723346734312 ~2018
11862437424171174624544712 ~2019
Exponent Prime Factor Dig. Year
11863375043923726750087912 ~2018
11865161912323730323824712 ~2018
11866525423123733050846312 ~2018
11867362751923734725503912 ~2018
11868429779923736859559912 ~2018
11869074365923738148731912 ~2018
11869282910323738565820712 ~2018
11869976041123739952082312 ~2018
11870189921923740379843912 ~2018
11870289205123740578410312 ~2018
11870752352323741504704712 ~2018
11871697495123743394990312 ~2018
11871717035923743434071912 ~2018
11872000460323744000920712 ~2018
11872191266323744382532712 ~2018
11872312517923744625035912 ~2018
11873095435123746190870312 ~2018
11873539658323747079316712 ~2018
11874221026171245326156712 ~2019
11874430514323748861028712 ~2018
11874467737123748935474312 ~2018
11874488161123748976322312 ~2018
11874979041771249874250312 ~2019
11875669964323751339928712 ~2018
11876385395923752770791912 ~2018
Exponent Prime Factor Dig. Year
1187645757911009...42235115 2025
11876833013923753666027912 ~2018
11877439838323754879676712 ~2018
11878094810323756189620712 ~2018
11878126673371268760039912 ~2019
11879622061123759244122312 ~2018
11879701955923759403911912 ~2018
11880452743123760905486312 ~2018
11880830767123761661534312 ~2018
11881879355923763758711912 ~2018
11883622315123767244630312 ~2018
11884829519923769659039912 ~2018
11885331359923770662719912 ~2018
11887014749923774029499912 ~2018
11888004725923776009451912 ~2018
11888938797771333632786312 ~2019
11889354527923778709055912 ~2018
11890026161923780052323912 ~2018
11891287425771347724554312 ~2019
11891397333771348384002312 ~2019
1189148948271664...20903916 2023
11891640607123783281214312 ~2018
11892836042323785672084712 ~2018
11893013563123786027126312 ~2018
11894433986323788867972712 ~2018
Exponent Prime Factor Dig. Year
11894604365923789208731912 ~2018
11894724272323789448544712 ~2018
11894735855923789471711912 ~2018
11895577310323791154620712 ~2018
11895851390323791702780712 ~2018
11897625224323795250448712 ~2018
11898034891123796069782312 ~2018
11898365201923796730403912 ~2018
11898684458323797368916712 ~2018
11898692083123797384166312 ~2018
11900096588323800193176712 ~2018
11900184098323800368196712 ~2018
1190062122315617...17303314 2023
11900796451123801592902312 ~2018
11900947994323801895988712 ~2018
11901366500323802733000712 ~2018
11902721621923805443243912 ~2018
11904088069123808176138312 ~2018
11905736365123811472730312 ~2018
11905944941923811889883912 ~2018
11907890713123815781426312 ~2018
11909105834323818211668712 ~2018
11910072787123820145574312 ~2018
11910244499923820488999912 ~2018
11911543985371469263911912 ~2019
Home
4.828.532 digits
e-mail
25-06-01