Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12031752881924063505763912 ~2018
12032818272172196909632712 ~2019
12032948059124065896118312 ~2018
12033658463924067316927912 ~2018
12033670487924067340975912 ~2018
12034491664172206949984712 ~2019
12034598989124069197978312 ~2018
1203485292891027...01280715 2023
12035353267124070706534312 ~2018
12035443292324070886584712 ~2018
12036064243124072128486312 ~2018
12036221735924072443471912 ~2018
12036639413924073278827912 ~2018
12038018657924076037315912 ~2018
12038055343124076110686312 ~2018
12038732196172232393176712 ~2019
12039112891124078225782312 ~2018
12039131665124078263330312 ~2018
12039882541124079765082312 ~2018
12040081217924080162435912 ~2018
12041215093124082430186312 ~2018
12041517902324083035804712 ~2018
12044001373124088002746312 ~2018
12044960027924089920055912 ~2018
12045203891924090407783912 ~2018
Exponent Prime Factor Dig. Year
12045890867372275345203912 ~2019
12046038350324092076700712 ~2018
12046288009124092576018312 ~2018
12046374517372278247103912 ~2019
12047631661772285789970312 ~2019
12048995161124097990322312 ~2018
12050048447924100096895912 ~2018
12050147114324100294228712 ~2018
12050184586172301107516712 ~2019
1205079263597447...48986314 2025
12051870979772311225878312 ~2019
12053028149924106056299912 ~2018
12053528838172321173028712 ~2019
12053637379124107274758312 ~2018
12054042391124108084782312 ~2018
12054196013924108392027912 ~2018
12054532841924109065683912 ~2018
12054570487124109140974312 ~2018
12055851241124111702482312 ~2018
12057573253124115146506312 ~2018
12057804949124115609898312 ~2018
12057926815772347560894312 ~2019
12059556073124119112146312 ~2018
12060347669924120695339912 ~2018
12060989915924121979831912 ~2018
Exponent Prime Factor Dig. Year
12061348811924122697623912 ~2018
12063200630324126401260712 ~2018
12063612903772381677422312 ~2019
12064819394324129638788712 ~2018
12065219053124130438106312 ~2018
12066785915924133571831912 ~2018
12067043617124134087234312 ~2018
12069232961924138465923912 ~2018
12069504559124139009118312 ~2018
12069728851372418373107912 ~2019
12070585286324141170572712 ~2018
12070874936324141749872712 ~2018
1207138582636880...20991114 2024
12071458559924142917119912 ~2018
12072051827924144103655912 ~2018
12072196316324144392632712 ~2018
12072971753924145943507912 ~2018
12073396733924146793467912 ~2018
12073574309924147148619912 ~2018
12073760135924147520271912 ~2018
12075418465124150836930312 ~2018
12075452747924150905495912 ~2018
12075792500324151585000712 ~2018
12075908252324151816504712 ~2018
12076450046324152900092712 ~2018
Exponent Prime Factor Dig. Year
12076601317124153202634312 ~2018
12076994210324153988420712 ~2018
12077764399124155528798312 ~2018
1207783408434855...01888714 2023
12079740469124159480938312 ~2018
12082456231124164912462312 ~2018
12082546730324165093460712 ~2018
12082825061924165650123912 ~2018
12083909117924167818235912 ~2018
12084226514324168453028712 ~2018
12086169152324172338304712 ~2018
12086170574324172341148712 ~2018
12086190033772517140202312 ~2019
12086465753372518794519912 ~2019
12088118609924176237219912 ~2018
12089412965924178825931912 ~2018
12090012311924180024623912 ~2018
12090175268324180350536712 ~2018
12091834537124183669074312 ~2018
12091891250324183782500712 ~2018
12092021783924184043567912 ~2018
12092507240324185014480712 ~2018
12092935877924185871755912 ~2018
1209299059331644...20688914 2024
12094954066172569724396712 ~2019
Home
4.828.532 digits
e-mail
25-06-01