Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12352246561124704493122312 ~2018
12352775875124705551750312 ~2018
1235288920934125...95906314 2024
12352982540324705965080712 ~2018
12353447849924706895699912 ~2018
12353985288174123911728712 ~2019
12354600491924709200983912 ~2018
12354640471124709280942312 ~2018
12355593854324711187708712 ~2018
12356090066324712180132712 ~2018
12356258189924712516379912 ~2018
12356616445124713232890312 ~2018
12357025655924714051311912 ~2018
12357332852324714665704712 ~2018
12357984449924715968899912 ~2018
12358353974324716707948712 ~2018
12359567342324719134684712 ~2018
12361206717774167240306312 ~2019
12361554173924723108347912 ~2018
12362044463924724088927912 ~2018
12362240017374173440103912 ~2019
12363612530324727225060712 ~2018
12364478507924728957015912 ~2018
12365363749124730727498312 ~2018
12366429739124732859478312 ~2018
Exponent Prime Factor Dig. Year
12367367618324734735236712 ~2018
12367885475924735770951912 ~2018
12368037596324736075192712 ~2018
1236813373632671...87040914 2024
12368620787374211724723912 ~2019
12368727307124737454614312 ~2018
12370106189924740212379912 ~2018
12370199857124740399714312 ~2018
12370365521924740731043912 ~2018
1237046446677125...32819314 2025
12370576340324741152680712 ~2018
12371719709924743439419912 ~2018
12372377485124744754970312 ~2018
12372972757124745945514312 ~2018
12373418972324746837944712 ~2018
12373968965924747937931912 ~2018
12374347903124748695806312 ~2018
12375205441124750410882312 ~2018
12375300985124750601970312 ~2018
1237669594391485...13268114 2024
12379143044324758286088712 ~2018
12380022473924760044947912 ~2018
12381030917374286185503912 ~2019
12381407237924762814475912 ~2018
1238261953032600...01363114 2024
Exponent Prime Factor Dig. Year
12385028191124770056382312 ~2018
12385301081924770602163912 ~2018
12385305983924770611967912 ~2018
12385613449774313680698312 ~2019
1238596908797035...41927314 2025
12386794693374320768159912 ~2019
12387236823774323420942312 ~2019
1238878354311883...98551314 2024
12388832552324777665104712 ~2018
12389002502324778005004712 ~2018
12389230133924778460267912 ~2018
12390142799924780285599912 ~2018
12390323677124780647354312 ~2018
12390553810174343322860712 ~2019
12390753638324781507276712 ~2018
12391303073924782606147912 ~2018
12392673212324785346424712 ~2018
12393425798324786851596712 ~2018
12393778832324787557664712 ~2018
12394038722324788077444712 ~2018
12394055149124788110298312 ~2018
12394604279924789208559912 ~2018
12394949522324789899044712 ~2018
12395252955774371517734312 ~2019
12395838193124791676386312 ~2018
Exponent Prime Factor Dig. Year
12396246960174377481760712 ~2019
12396353029124792706058312 ~2018
12396555602324793111204712 ~2018
12396728102324793456204712 ~2018
12396747770324793495540712 ~2018
12399600176324799200352712 ~2018
12399988343924799976687912 ~2018
12400036028324800072056712 ~2018
12401181608324802363216712 ~2018
12401411837924802823675912 ~2018
1240165677712108...52107114 2024
12402615305924805230611912 ~2018
12403087375124806174750312 ~2018
12403205396324806410792712 ~2018
12404180171374425081027912 ~2019
1240571724712704...59867914 2024
12406111451924812222903912 ~2018
12407601835124815203670312 ~2018
12409045219124818090438312 ~2018
12409089671924818179343912 ~2018
12410170832324820341664712 ~2018
1241104977473202...41872714 2024
1241270627991462...97722315 2024
1241279816932609...51868715 2023
12413949572324827899144712 ~2018
Home
4.828.532 digits
e-mail
25-06-01