Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
25771078519151542157038312 ~2020
25774717645151549435290312 ~2020
25775243029151550486058312 ~2020
25777332470351554664940712 ~2020
25778173466351556346932712 ~2020
25782951308351565902616712 ~2020
25785608054351571216108712 ~2020
25785713012351571426024712 ~2020
25785829049951571658099912 ~2020
25786311842351572623684712 ~2020
25789100138351578200276712 ~2020
25792138091951584276183912 ~2020
25793487587951586975175912 ~2020
2579497092793972...22896714 2024
2579619733911238...72276914 2024
2579830710779906...29356914 2023
25802510882351605021764712 ~2020
25803048581951606097163912 ~2020
25803252811151606505622312 ~2020
25805840240351611680480712 ~2020
25808758031951617516063912 ~2020
25810672069151621344138312 ~2020
25811017856351622035712712 ~2020
25814594665151629189330312 ~2020
25814930749151629861498312 ~2020
Exponent Prime Factor Dig. Year
25816979471951633958943912 ~2020
25819097953151638195906312 ~2020
25819139582351638279164712 ~2020
25820728331951641456663912 ~2020
25821434051951642868103912 ~2020
25821553057151643106114312 ~2020
25824063536351648127072712 ~2020
2582548519731446...71048914 2024
25825686794351651373588712 ~2020
25828537778351657075556712 ~2020
25828950731951657901463912 ~2020
25831774891151663549782312 ~2020
25834034075951668068151912 ~2020
25840893749951681787499912 ~2020
25841365417151682730834312 ~2020
25843176385151686352770312 ~2020
25845955592351691911184712 ~2020
2584674138732894...35377714 2024
25847120587151694241174312 ~2020
25847716549151695433098312 ~2020
25847735575151695471150312 ~2020
25859983622351719967244712 ~2020
2586005338397085...27188714 2023
25863405373151726810746312 ~2020
25866292826351732585652712 ~2020
Exponent Prime Factor Dig. Year
25867227020351734454040712 ~2020
25867447429151734894858312 ~2020
25871037656351742075312712 ~2020
25873100030351746200060712 ~2020
2587406050093104...60108114 2024
25874777719151749555438312 ~2020
25875476809151750953618312 ~2020
25875906049151751812098312 ~2020
2587598430533105...16636114 2024
25876348751951752697503912 ~2020
25876865035151753730070312 ~2020
25877665292351755330584712 ~2020
25883965580351767931160712 ~2020
25885461158351770922316712 ~2020
25885917569951771835139912 ~2020
25888772701151777545402312 ~2020
25889601973151779203946312 ~2020
25890667841951781335683912 ~2020
25898488670351796977340712 ~2020
2589981506891346...35828115 2025
25900245209951800490419912 ~2020
25904902211951809804423912 ~2020
25906211359151812422718312 ~2020
25908201098351816402196712 ~2020
25908692333951817384667912 ~2020
Exponent Prime Factor Dig. Year
25914686245151829372490312 ~2020
25914999140351829998280712 ~2020
25915133228351830266456712 ~2020
25915344614351830689228712 ~2020
25916779856351833559712712 ~2020
25924075760351848151520712 ~2020
25925548094351851096188712 ~2020
25927090376351854180752712 ~2020
25930168034351860336068712 ~2020
25931595203951863190407912 ~2020
2593171252012489...01929714 2024
25934109157151868218314312 ~2020
25934308021151868616042312 ~2020
25934377735151868755470312 ~2020
25935703627151871407254312 ~2020
2593600162191244...77851314 2024
25936476343151872952686312 ~2020
25937639813951875279627912 ~2020
25938445259951876890519912 ~2020
2593980065092075...52072114 2024
25942271935151884543870312 ~2020
25942377817151884755634312 ~2020
25949653418351899306836712 ~2020
25951853449151903706898312 ~2020
25952055257951904110515912 ~2020
Home
4.724.182 digits
e-mail
25-04-13