Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9027888124154167328744712 ~2018
9028058516318056117032712 ~2017
9028080877118056161754312 ~2017
9028219433918056438867912 ~2017
9028478918318056957836712 ~2017
9029348174972234785399312 ~2018
9030297907772242383261712 ~2018
9030991789118061983578312 ~2017
9031195597118062391194312 ~2017
9032276177918064552355912 ~2017
9032962292318065924584712 ~2017
9033585104318067170208712 ~2017
9033979675354203878051912 ~2018
9034161967772273295741712 ~2018
9034230266318068460532712 ~2017
9034364972318068729944712 ~2017
9034424461172275395688912 ~2018
9034790689354208744135912 ~2018
9034815134318069630268712 ~2017
9036213026318072426052712 ~2017
9036527552318073055104712 ~2017
9036949445918073898891912 ~2017
9037391416772299131333712 ~2018
9037721078318075442156712 ~2017
9037874192318075748384712 ~2017
Exponent Prime Factor Dig. Year
9038458675118076917350312 ~2017
9039211435354235268611912 ~2018
9039819515918079639031912 ~2017
9040054114172320432912912 ~2018
9040617671918081235343912 ~2017
9041504168318083008336712 ~2017
9041692742318083385484712 ~2017
9041904808772335238469712 ~2018
9042115626154252693756712 ~2018
9042716215118085432430312 ~2017
9042909210154257455260712 ~2018
9043126514318086253028712 ~2017
9043404703118086809406312 ~2017
9044084113118088168226312 ~2017
904431081593473...53305714 2023
9044469587918088939175912 ~2017
9045044293118090088586312 ~2017
9045393706154272362236712 ~2018
9045542255918091084511912 ~2017
9046984028318093968056712 ~2017
9048258727118096517454312 ~2017
9048286948772386295589712 ~2018
9049082900318098165800712 ~2017
9049136288318098272576712 ~2017
9049172513918098345027912 ~2017
Exponent Prime Factor Dig. Year
9050069225918100138451912 ~2017
9050188729118100377458312 ~2017
9050811841118101623682312 ~2017
9051024655118102049310312 ~2017
9051846115118103692230312 ~2017
9051856340318103712680712 ~2017
9052095156154312570936712 ~2018
9052257883772418063069712 ~2018
905247305632391...14744715 2025
9052833638318105667276712 ~2017
9053052604154318315624712 ~2018
9053125910318106251820712 ~2017
9053661233918107322467912 ~2017
9053887067918107774135912 ~2017
9054132227918108264455912 ~2017
9054554150318109108300712 ~2017
9054620665118109241330312 ~2017
9054628255754327769534312 ~2018
9055153382318110306764712 ~2017
9055316954318110633908712 ~2017
9055384709918110769419912 ~2017
9055396039754332376238312 ~2018
9056150845118112301690312 ~2017
9056506700318113013400712 ~2017
9056682016154340092096712 ~2018
Exponent Prime Factor Dig. Year
9056738420318113476840712 ~2017
9057907412318115814824712 ~2017
9058590133118117180266312 ~2017
9058737085118117474170312 ~2017
9059140097918118280195912 ~2017
9059524471118119048942312 ~2017
9059803012154358818072712 ~2018
9060046099118120092198312 ~2017
9060126038318120252076712 ~2017
9060466124972483728999312 ~2018
9060666722318121333444712 ~2017
9061084829918122169659912 ~2017
9061290738154367744428712 ~2018
9061880155118123760310312 ~2017
9062047231172496377848912 ~2018
9062179997918124359995912 ~2017
9062325667354373954003912 ~2018
9063930767918127861535912 ~2017
9064226311118128452622312 ~2017
9065367569918130735139912 ~2017
9065745913118131491826312 ~2017
9065873867354395243203912 ~2018
9066411418772531291349712 ~2018
9066991601918133983203912 ~2017
9067623038318135246076712 ~2017
Home
4.933.056 digits
e-mail
25-07-20