Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13578622958327157245916712 ~2018
13580067121127160134242312 ~2018
13581963275927163926551912 ~2018
13582799828327165599656712 ~2018
13583005991927166011983912 ~2018
13584928940327169857880712 ~2018
13587122891927174245783912 ~2018
13587304736327174609472712 ~2018
13587415691927174831383912 ~2018
13588980251927177960503912 ~2018
13589392721927178785443912 ~2018
13589847313127179694626312 ~2018
1359101346971247...65184715 2025
13592504474327185008948712 ~2018
13592763668327185527336712 ~2018
13592987797127185975594312 ~2018
13593301562327186603124712 ~2018
13594292861927188585723912 ~2018
13595095901927190191803912 ~2018
13595247947927190495895912 ~2018
13598219834327196439668712 ~2018
13598554513127197109026312 ~2018
13599199915127198399830312 ~2018
13599807800327199615600712 ~2018
13599843415127199686830312 ~2018
Exponent Prime Factor Dig. Year
13600859755127201719510312 ~2018
13601022911927202045823912 ~2018
13601523559127203047118312 ~2018
1360187507935223...30451314 2023
13604745107927209490215912 ~2018
13606353943127212707886312 ~2018
13608591121127217182242312 ~2018
13608610034327217220068712 ~2018
13611245269127222490538312 ~2018
13612089397127224178794312 ~2018
1361360624712940...49373714 2024
13613813270327227626540712 ~2018
13613911712327227823424712 ~2018
13613950604327227901208712 ~2018
13614143635127228287270312 ~2018
13615006592327230013184712 ~2018
13616398265927232796531912 ~2018
13616804503127233609006312 ~2018
13618002338327236004676712 ~2018
13618363865927236727731912 ~2018
13618979159927237958319912 ~2018
13619454482327238908964712 ~2018
13621025363927242050727912 ~2018
13621942274327243884548712 ~2018
13622293079927244586159912 ~2018
Exponent Prime Factor Dig. Year
13622825777927245651555912 ~2018
13622916512327245833024712 ~2018
13624007990327248015980712 ~2018
13624687417127249374834312 ~2018
13624726826327249453652712 ~2018
13625300785127250601570312 ~2018
13625507129927251014259912 ~2018
13626303890327252607780712 ~2018
13627905092327255810184712 ~2018
13629841880327259683760712 ~2018
13631471405927262942811912 ~2018
13631727170327263454340712 ~2018
13631836967927263673935912 ~2018
1363209056634190...00806315 2025
1363230527294569...74760915 2025
13633455965927266911931912 ~2018
13633463005127266926010312 ~2018
13634771750327269543500712 ~2018
13634789809127269579618312 ~2018
13639841929127279683858312 ~2018
13643646284327287292568712 ~2018
13644433759127288867518312 ~2018
13646321653127292643306312 ~2018
13647167309927294334619912 ~2018
13647361436327294722872712 ~2018
Exponent Prime Factor Dig. Year
13649315516327298631032712 ~2018
13649550728327299101456712 ~2018
13650225860327300451720712 ~2018
13651047236327302094472712 ~2018
13652754299927305508599912 ~2018
13653414389927306828779912 ~2018
13653500707127307001414312 ~2018
13654125001127308250002312 ~2018
13654725788327309451576712 ~2018
13655362799927310725599912 ~2018
13656861349127313722698312 ~2018
13658439067127316878134312 ~2018
13659204485927318408971912 ~2018
13661359142327322718284712 ~2018
13664801947127329603894312 ~2018
13665172616327330345232712 ~2018
13665420889127330841778312 ~2018
13666285273127332570546312 ~2018
13667602202327335204404712 ~2018
13667789675927335579351912 ~2018
13668035672327336071344712 ~2018
13668556819127337113638312 ~2018
13670258497127340516994312 ~2018
13670548499927341096999912 ~2018
13670698315127341396630312 ~2018
Home
4.828.532 digits
e-mail
25-06-01