Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8534855477917069710955912 ~2016
8535484394317070968788712 ~2016
8536004669917072009339912 ~2016
8536070426317072140852712 ~2016
8536312879768290503037712 ~2018
8536419835168291358680912 ~2018
8536602457117073204914312 ~2016
8537406331117074812662312 ~2016
8537438365117074876730312 ~2016
8537861342317075722684712 ~2016
8538687973117077375946312 ~2016
853933595592817...65447114 2023
8540574565351243447391912 ~2018
8541932234317083864468712 ~2016
8541942446317083884892712 ~2016
8542505369917085010739912 ~2016
8542513377751255080266312 ~2018
8542615580968340924647312 ~2018
8543091673768344733389712 ~2018
8543148289117086296578312 ~2016
8543198144317086396288712 ~2016
8543223551917086447103912 ~2016
8545069782151270418692712 ~2018
8545592320768364738565712 ~2018
8545924019917091848039912 ~2016
Exponent Prime Factor Dig. Year
8546032865917092065731912 ~2016
8547402056317094804112712 ~2016
8548106005768384848045712 ~2018
8548843927117097687854312 ~2016
8549164381351294986287912 ~2018
8549210384317098420768712 ~2016
8550808433917101616867912 ~2016
8551354418317102708836712 ~2016
8551506403117103012806312 ~2016
855219594292052...26296114 2024
8552565764317105131528712 ~2016
8552784007117105568014312 ~2016
8553255838768426046709712 ~2018
8553457802317106915604712 ~2016
8554446214151326677284712 ~2018
8554924478317109848956712 ~2016
8555124828151330748968712 ~2018
8555284066168442272528912 ~2018
8555735539751334413238312 ~2018
8555820542317111641084712 ~2016
8556023161117112046322312 ~2016
8556323117917112646235912 ~2016
8557236776317114473552712 ~2016
8557746617917115493235912 ~2016
8558246912317116493824712 ~2016
Exponent Prime Factor Dig. Year
8558910043117117820086312 ~2016
8559526202317119052404712 ~2016
8560400050768483200405712 ~2018
8561177587768489420701712 ~2018
8562162698317124325396712 ~2016
8562569483917125138967912 ~2016
8562950263117125900526312 ~2016
8563042007917126084015912 ~2016
8563240897117126481794312 ~2016
8563838845351383033071912 ~2018
8564018424151384110544712 ~2018
8564400683917128801367912 ~2016
8564424019751386544118312 ~2018
8564740927117129481854312 ~2016
8567127434317134254868712 ~2016
8567297576317134595152712 ~2016
8567553898768540431189712 ~2018
8567715701917135431403912 ~2016
8568142127917136284255912 ~2016
8568229259917136458519912 ~2016
8568560964151411365784712 ~2018
8568841831117137683662312 ~2016
8569160660317138321320712 ~2016
8569314266317138628532712 ~2016
8569394125117138788250312 ~2016
Exponent Prime Factor Dig. Year
8569973299117139946598312 ~2016
8570181095917140362191912 ~2016
8570236543117140473086312 ~2016
8570368109917140736219912 ~2016
8570877740317141755480712 ~2016
8570922450151425534700712 ~2018
8570985011917141970023912 ~2016
8571054437917142108875912 ~2016
8571906206317143812412712 ~2016
8571922112317143844224712 ~2016
8572192961917144385923912 ~2016
8572536169117145072338312 ~2016
8572654783117145309566312 ~2016
8572912507117145825014312 ~2016
8573945138317147890276712 ~2016
8574029360317148058720712 ~2016
8574053353117148106706312 ~2016
8574215221117148430442312 ~2016
8575005428317150010856712 ~2016
8575128611917150257223912 ~2016
8575253167117150506334312 ~2016
8575264657117150529314312 ~2016
8575355515751452133094312 ~2018
8576891594317153783188712 ~2016
8577567229117155134458312 ~2016
Home
4.933.056 digits
e-mail
25-07-20