Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9200859637118401719274312 ~2017
9201749195918403498391912 ~2017
920213105337196...83680714 2025
9202143394155212860364712 ~2018
9202162058318404324116712 ~2017
9202234783173617878264912 ~2018
9202539679118405079358312 ~2017
9202732376318405464752712 ~2017
9203165368773625322949712 ~2018
9203358650318406717300712 ~2017
9204024791918408049583912 ~2017
9205519044155233114264712 ~2018
9206360486318412720972712 ~2017
9206562401918413124803912 ~2017
9206563164155239378984712 ~2018
9207368521118414737042312 ~2017
920738955619207...56100114 2025
9207483281918414966563912 ~2017
920772157075966...77813714 2023
9208657582173669260656912 ~2018
9208787309918417574619912 ~2017
9209178508773673428069712 ~2018
9209725645118419451290312 ~2017
9210411514155262469084712 ~2018
9211151957918422303915912 ~2017
Exponent Prime Factor Dig. Year
9212773943918425547887912 ~2017
9212969378318425938756712 ~2017
9212977778318425955556712 ~2017
9213025291118426050582312 ~2017
9214395920318428791840712 ~2017
9214796249918429592499912 ~2017
9214834400318429668800712 ~2017
9215446523918430893047912 ~2017
9215563979918431127959912 ~2017
9215712624155294275744712 ~2018
9216644957918433289915912 ~2017
9216752387918433504775912 ~2017
9217425001118434850002312 ~2017
9217636783118435273566312 ~2017
9218253757118436507514312 ~2017
9218913697118437827394312 ~2017
9219255173918438510347912 ~2017
9219528967118439057934312 ~2017
9219956893118439913786312 ~2017
9221022049118442044098312 ~2017
9221277416318442554832712 ~2017
922162372631386...84355315 2025
922167250094629...95451914 2023
9222322981118444645962312 ~2017
9222611857755335671146312 ~2018
Exponent Prime Factor Dig. Year
9223420796318446841592712 ~2017
9223936555118447873110312 ~2017
9225342068318450684136712 ~2017
9225423086318450846172712 ~2017
9225883279118451766558312 ~2017
9226250275118452500550312 ~2017
9226569077355359414463912 ~2018
9227336714318454673428712 ~2017
9228417241118456834482312 ~2017
9228772778318457545556712 ~2017
9228984431918457968863912 ~2017
9229647055755377882334312 ~2018
9229808203355378849219912 ~2018
9229880803773839046429712 ~2018
9230348992155382093952712 ~2018
9230772581918461545163912 ~2017
9231248083118462496166312 ~2017
9231498881918462997763912 ~2017
9232322276318464644552712 ~2017
9232461353918464922707912 ~2017
9233382157118466764314312 ~2017
9233826638973870613111312 ~2018
9234080563355404483379912 ~2018
9234111760773872894085712 ~2018
9234148796318468297592712 ~2017
Exponent Prime Factor Dig. Year
9234242684318468485368712 ~2017
9234369991118468739982312 ~2017
9234736925918469473851912 ~2017
9235778411918471556823912 ~2017
9236284964318472569928712 ~2017
9236743405118473486810312 ~2017
9237969024155427814144712 ~2018
9238628435918477256871912 ~2017
9238974967118477949934312 ~2017
9240377546318480755092712 ~2017
9240564519755443387118312 ~2018
9241201471173929611768912 ~2018
9241732735118483465470312 ~2017
9242204833118484409666312 ~2017
9242332289918484664579912 ~2017
9242636383118485272766312 ~2017
9242714108318485428216712 ~2017
9242778701918485557403912 ~2017
9242873803355457242819912 ~2018
9243508193918487016387912 ~2017
9243525518318487051036712 ~2017
9244105202318488210404712 ~2017
9244295772155465774632712 ~2018
9244511227118489022454312 ~2017
9245144030318490288060712 ~2017
Home
4.933.056 digits
e-mail
25-07-20