Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15340929941930681859883912 ~2018
15341499173930682998347912 ~2018
15341698787930683397575912 ~2018
15341964068330683928136712 ~2018
15342064196330684128392712 ~2018
15342208670330684417340712 ~2018
15343284019130686568038312 ~2018
15345037813130690075626312 ~2018
1534538706791795...69443115 2025
1534571307911611...33055115 2025
15345807721130691615442312 ~2018
1534916582631031...35273715 2023
15349294741130698589482312 ~2018
15349379447930698758895912 ~2018
15349740353930699480707912 ~2018
15349927652330699855304712 ~2018
15350926753130701853506312 ~2018
15352406965130704813930312 ~2018
15352603903130705207806312 ~2018
15352630568330705261136712 ~2018
15352691120330705382240712 ~2018
15354338389130708676778312 ~2018
15354632671130709265342312 ~2018
15355179908330710359816712 ~2018
15355581241130711162482312 ~2018
Exponent Prime Factor Dig. Year
15356232608330712465216712 ~2018
15356732083130713464166312 ~2018
15363589208330727178416712 ~2018
15363876641930727753283912 ~2018
15366273089930732546179912 ~2018
15367949084330735898168712 ~2018
15370505681930741011363912 ~2018
15370598864330741197728712 ~2018
15371652836330743305672712 ~2018
15372076549130744153098312 ~2018
15373547629130747095258312 ~2018
15374412740330748825480712 ~2018
15374955986330749911972712 ~2018
1537571047798118...32331314 2025
15376205399930752410799912 ~2018
15376913960330753827920712 ~2018
15378418484330756836968712 ~2018
15380217775130760435550312 ~2018
15380736722330761473444712 ~2018
15385191269930770382539912 ~2018
1538522402595046...80495314 2023
15387447173930774894347912 ~2018
15388392119930776784239912 ~2018
15389345111930778690223912 ~2018
15389474713130778949426312 ~2018
Exponent Prime Factor Dig. Year
15393548705930787097411912 ~2018
15393900625130787801250312 ~2018
15394514953130789029906312 ~2018
15396506780330793013560712 ~2018
15397145600330794291200712 ~2018
15397656827930795313655912 ~2018
15398042743130796085486312 ~2018
15398672617130797345234312 ~2018
15401894731130803789462312 ~2018
15402000020330804000040712 ~2018
1540558817093450...50281714 2023
15406630835930813261671912 ~2018
15407699773130815399546312 ~2018
15409580773130819161546312 ~2018
15409655995130819311990312 ~2018
15409895197130819790394312 ~2018
1541002647193205...06155314 2024
15410407859930820815719912 ~2018
15410560313930821120627912 ~2018
15413759378330827518756712 ~2018
15414797521130829595042312 ~2018
15415772702330831545404712 ~2018
15415852112330831704224712 ~2018
15416085449930832170899912 ~2018
15416613773930833227547912 ~2018
Exponent Prime Factor Dig. Year
15416762605130833525210312 ~2018
15416881813130833763626312 ~2018
15416984294330833968588712 ~2018
15418834181930837668363912 ~2018
15420311137130840622274312 ~2018
15420531032330841062064712 ~2018
15422522647130845045294312 ~2018
15423370999130846741998312 ~2018
15424232587130848465174312 ~2018
15425231087930850462175912 ~2018
15426260993930852521987912 ~2018
15428373500330856747000712 ~2018
15428723927930857447855912 ~2018
15429079177130858158354312 ~2018
15431118032330862236064712 ~2018
15431900324330863800648712 ~2018
15433752325130867504650312 ~2018
15435059785130870119570312 ~2018
15436984817930873969635912 ~2018
15437517212330875034424712 ~2018
15437843192330875686384712 ~2018
15438294493130876588986312 ~2018
15438536833130877073666312 ~2018
15439235102330878470204712 ~2018
15440071712330880143424712 ~2018
Home
4.828.532 digits
e-mail
25-06-01