Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
28965226961957930453923912 ~2021
28965744746357931489492712 ~2021
2896723500893881...91192714 2024
28968094889957936189779912 ~2021
2896928272191390...70651314 2024
2897159470131014...45455115 2023
28971680717957943361435912 ~2021
2897203156637648...33503314 2023
28973936780357947873560712 ~2021
28976088091157952176182312 ~2021
28980711338357961422676712 ~2021
28982186423957964372847912 ~2021
28983039872357966079744712 ~2021
28989727832357979455664712 ~2021
28990673756357981347512712 ~2021
28994080277957988160555912 ~2021
28994683922357989367844712 ~2021
28997848028357995696056712 ~2021
28998559523957997119047912 ~2021
2899918172292499...45139915 2024
28999220041157998440082312 ~2021
28999566253157999132506312 ~2021
29000255773158000511546312 ~2021
29002586701158005173402312 ~2021
29002703149158005406298312 ~2021
Exponent Prime Factor Dig. Year
29003314933158006629866312 ~2021
29005135985958010271971912 ~2021
29006408257158012816514312 ~2021
29009153141958018306283912 ~2021
2901412415534120...30052714 2023
29014387073958028774147912 ~2021
29019114839958038229679912 ~2021
29020230853158040461706312 ~2021
29021146736358042293472712 ~2021
2902117950071683...11040714 2024
29021867341158043734682312 ~2021
29021898746358043797492712 ~2021
29021996533158043993066312 ~2021
29023767431958047534863912 ~2021
29025506120358051012240712 ~2021
2902582781332496...91943914 2024
29027384131158054768262312 ~2021
29030925979158061851958312 ~2021
29033374562358066749124712 ~2021
29036223461958072446923912 ~2021
2903971945512787...76896115 2025
29040036605958080073211912 ~2021
29043062509158086125018312 ~2021
2904484079879120...10791914 2023
29046332167158092664334312 ~2021
Exponent Prime Factor Dig. Year
29048970823158097941646312 ~2021
2905907273872615...46483114 2024
29059459057158118918114312 ~2021
29065560997158131121994312 ~2021
29067903719958135807439912 ~2021
2906942537572325...30056114 2024
29070176216358140352432712 ~2021
29070363251958140726503912 ~2021
29074381502358148763004712 ~2021
29074764619158149529238312 ~2021
29080155371958160310743912 ~2021
29082395729958164791459912 ~2021
29088443042358176886084712 ~2021
2908868556431029...89762315 2024
2909282647872618...83083114 2024
29093541284358187082568712 ~2021
29094026401158188052802312 ~2021
29094223007958188446015912 ~2021
2909482869612269...38295914 2025
2909527095112793...11305714 2024
29097314083158194628166312 ~2021
29097416072358194832144712 ~2021
29097700907958195401815912 ~2021
29101072940358202145880712 ~2021
29101972663158203945326312 ~2021
Exponent Prime Factor Dig. Year
2910328634473317...43295914 2024
29105317868358210635736712 ~2021
29108137513158216275026312 ~2021
29108472275958216944551912 ~2021
29110689374358221378748712 ~2021
29112981284358225962568712 ~2021
29113717661958227435323912 ~2021
29115850253958231700507912 ~2021
29116151485158232302970312 ~2021
29116615145958233230291912 ~2021
2911688697739957...46236714 2023
29117012609958234025219912 ~2021
29117984318358235968636712 ~2021
29125160954358250321908712 ~2021
29128071152358256142304712 ~2021
2913099009191450...65766315 2023
29132102425158264204850312 ~2021
29135133965958270267931912 ~2021
29138159612358276319224712 ~2021
29138330063958276660127912 ~2021
29139630284358279260568712 ~2021
29141045155158282090310312 ~2021
29141080166358282160332712 ~2021
29142301805958284603611912 ~2021
29143923980358287847960712 ~2021
Home
4.724.182 digits
e-mail
25-04-13