Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9067744220318135488440712 ~2017
9068276516318136553032712 ~2017
9068503130318137006260712 ~2017
9068818065754412908394312 ~2018
9069294362318138588724712 ~2017
9069694675754418168054312 ~2018
9070335212318140670424712 ~2017
9071318677118142637354312 ~2017
9071323225118142646450312 ~2017
9072100205918144200411912 ~2017
9072118273118144236546312 ~2017
9073159982318146319964712 ~2017
9073187233118146374466312 ~2017
9073622494154441734964712 ~2018
9074046739754444280438312 ~2018
9075197269118150394538312 ~2017
9075382451918150764903912 ~2017
9075484847918150969695912 ~2017
9077543504318155087008712 ~2017
9077984021918155968043912 ~2017
9077992862318155985724712 ~2017
9078074587118156149174312 ~2017
9078897194318157794388712 ~2017
9079035533918158071067912 ~2017
9080802242318161604484712 ~2017
Exponent Prime Factor Dig. Year
9080834600972646676807312 ~2018
908111983912633...53339114 2024
9081326000318162652000712 ~2017
9081829015118163658030312 ~2017
9082017152318164034304712 ~2017
9082572308318165144616712 ~2017
9082758595118165517190312 ~2017
9082899323918165798647912 ~2017
9082917614318165835228712 ~2017
9083263117772666104941712 ~2018
9084119096318168238192712 ~2017
9084302603354505815619912 ~2018
9084711433118169422866312 ~2017
9084777230318169554460712 ~2017
9085124999918170249999912 ~2017
9085346731118170693462312 ~2017
9086067421118172134842312 ~2017
9086426942972691415543312 ~2018
9086478746318172957492712 ~2017
9086719752154520318512712 ~2018
9087602539118175205078312 ~2017
9088800536318177601072712 ~2017
9088818380318177636760712 ~2017
9089032283972712258271312 ~2018
9089643755918179287511912 ~2017
Exponent Prime Factor Dig. Year
9089815957772718527661712 ~2018
9089963917754539783506312 ~2018
9090004715918180009431912 ~2017
9090492350318180984700712 ~2017
9090589375118181178750312 ~2017
9091053691118182107382312 ~2017
9091285964318182571928712 ~2017
9091297843354547787059912 ~2018
9091727187754550363126312 ~2018
9091763495918183526991912 ~2017
9091992026318183984052712 ~2017
9091995660154551973960712 ~2018
9092136605918184273211912 ~2017
9092165247754552991486312 ~2018
9092228695118184457390312 ~2017
9092382445118184764890312 ~2017
9092422912772739383301712 ~2018
9092502115754555012694312 ~2018
9092760019354556560115912 ~2018
9093102728318186205456712 ~2017
9093737051918187474103912 ~2017
9093999943118187999886312 ~2017
9095707150154574242900712 ~2018
9096092711918192185423912 ~2017
9096142237118192284474312 ~2017
Exponent Prime Factor Dig. Year
9096422405972771379247312 ~2018
9096652232318193304464712 ~2017
9096843773354581062639912 ~2018
9096861085118193722170312 ~2017
9097718099918195436199912 ~2017
9097875041918195750083912 ~2017
9098394377918196788755912 ~2017
9098590543118197181086312 ~2017
9098698889918197397779912 ~2017
9099444854318198889708712 ~2017
9099629780318199259560712 ~2017
9099635281754597811690312 ~2018
9099635503118199271006312 ~2017
9100014170318200028340712 ~2017
9100064329118200128658312 ~2017
9100951397918201902795912 ~2017
9101177381918202354763912 ~2017
9101472299918202944599912 ~2017
9101600552318203201104712 ~2017
9101736932318203473864712 ~2017
9101929056154611574336712 ~2018
9102689408318205378816712 ~2017
9103635986318207271972712 ~2017
9104289607118208579214312 ~2017
9104494999118208989998312 ~2017
Home
4.933.056 digits
e-mail
25-07-20