Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29313822038358627644076712 ~2021
29314220789958628441579912 ~2021
29315645209158631290418312 ~2021
29316033115158632066230312 ~2021
29316112946358632225892712 ~2021
29320393633158640787266312 ~2021
29320652983158641305966312 ~2021
29322904958358645809916712 ~2021
29328671138358657342276712 ~2021
29328702425958657404851912 ~2021
29334223891158668447782312 ~2021
29340514106358681028212712 ~2021
29340965204358681930408712 ~2021
29341635347958683270695912 ~2021
29343746450358687492900712 ~2021
29344156118358688312236712 ~2021
2934937936793521...24148114 2024
29349567211158699134422312 ~2021
29352293651958704587303912 ~2021
2935475911511409...37524914 2024
29356588124358713176248712 ~2021
2935718291412289...67299914 2024
29363461361958726922723912 ~2021
29365642165158731284330312 ~2021
29366608265958733216531912 ~2021
Exponent Prime Factor Dig. Year
29370342905958740685811912 ~2021
29373214751958746429503912 ~2021
2937413066274053...31452714 2023
29374329650358748659300712 ~2021
29375265389958750530779912 ~2021
2937528610136151...96122315 2024
29379826778358759653556712 ~2021
29380350223158760700446312 ~2021
29381474743158762949486312 ~2021
29385645692358771291384712 ~2021
29386434695958772869391912 ~2021
29386652719158773305438312 ~2021
29387515376358775030752712 ~2021
29388382633158776765266312 ~2021
29390819840358781639680712 ~2021
29395013378358790026756712 ~2021
29395841564358791683128712 ~2021
29396486867958792973735912 ~2021
2939755962313292...77787314 2024
29398644269958797288539912 ~2021
29400083072358800166144712 ~2021
29401065371958802130743912 ~2021
2940240619311367...97915116 2025
2940245222036880...19550314 2023
29402820041958805640083912 ~2021
Exponent Prime Factor Dig. Year
29402965637958805931275912 ~2021
2940496570213528...84252114 2024
29405241991158810483982312 ~2021
29408009681958816019363912 ~2021
29408944892358817889784712 ~2021
29410314379158820628758312 ~2021
29412353501958824707003912 ~2021
29413305121158826610242312 ~2021
29416182209958832364419912 ~2021
29416211993958832423987912 ~2021
2942321836271818...48148715 2023
2942371063633118...27447914 2024
29424259277958848518555912 ~2021
29427482933958854965867912 ~2021
29430087169158860174338312 ~2021
29434710806358869421612712 ~2021
29435841572358871683144712 ~2021
29437325501958874651003912 ~2021
29438313427158876626854312 ~2021
29446072112358892144224712 ~2021
29448202586358896405172712 ~2021
29448505867158897011734312 ~2021
2945049093433828...21459114 2024
2945146655279012...65126314 2025
2945275519872650...67883114 2024
Exponent Prime Factor Dig. Year
29458764343158917528686312 ~2021
29459478548358918957096712 ~2021
29460277273158920554546312 ~2021
2946543007632651...06867114 2024
29465954849958931909699912 ~2021
29468259431958936518863912 ~2021
29468790133158937580266312 ~2021
29469591739158939183478312 ~2021
29470503593958941007187912 ~2021
29470873103958941746207912 ~2021
2947194263872499...57617715 2025
29476254815958952509631912 ~2021
29476576538358953153076712 ~2021
29478857815158957715630312 ~2021
29479925807958959851615912 ~2021
29484892535958969785071912 ~2021
29485117579158970235158312 ~2021
2949021323771356...08934314 2024
2949492051014424...76515114 2023
29495819329158991638658312 ~2021
2949587885111940...84023915 2025
29497181423958994362847912 ~2021
29497315226358994630452712 ~2021
29497607593158995215186312 ~2021
29498760419958997520839912 ~2021
Home
4.724.182 digits
e-mail
25-04-13