Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15242198923130484397846312 ~2018
15242747252330485494504712 ~2018
15243450475130486900950312 ~2018
15243961867130487923734312 ~2018
15244611209930489222419912 ~2018
15245418913130490837826312 ~2018
15247268135930494536271912 ~2018
15247683547130495367094312 ~2018
15248268763130496537526312 ~2018
1524948127811598...79448915 2025
15251338705130502677410312 ~2018
15252155630330504311260712 ~2018
15253836283130507672566312 ~2018
15255348131930510696263912 ~2018
15257835434330515670868712 ~2018
15258957539930517915079912 ~2018
15262803431930525606863912 ~2018
15263194951130526389902312 ~2018
15263458747130526917494312 ~2018
15265848032330531696064712 ~2018
15266860058330533720116712 ~2018
15269199599930538399199912 ~2018
15269483444330538966888712 ~2018
1526976917593863...15027115 2024
15269925890330539851780712 ~2018
Exponent Prime Factor Dig. Year
15270401473130540802946312 ~2018
15271706717930543413435912 ~2018
15271927379930543854759912 ~2018
15272884049930545768099912 ~2018
15273279548330546559096712 ~2018
15274565735930549131471912 ~2018
15274773587930549547175912 ~2018
15275369851130550739702312 ~2018
15275774894330551549788712 ~2018
15276547337930553094675912 ~2018
15281681287130563362574312 ~2018
15282407267930564814535912 ~2018
15282639692330565279384712 ~2018
15282665413130565330826312 ~2018
15283210165130566420330312 ~2018
15283745474330567490948712 ~2018
15284286428330568572856712 ~2018
15284376601130568753202312 ~2018
15285881857130571763714312 ~2018
15286273283930572546567912 ~2018
1528730243833821...09575114 2024
15291153389930582306779912 ~2018
15292041011930584082023912 ~2018
1529302409175597...17562314 2023
15293377346330586754692712 ~2018
Exponent Prime Factor Dig. Year
15293528671130587057342312 ~2018
15295264795130590529590312 ~2018
15296128615130592257230312 ~2018
15297864104330595728208712 ~2018
15298012034330596024068712 ~2018
15298116121130596232242312 ~2018
15299455370330598910740712 ~2018
15300401401130600802802312 ~2018
15300884627930601769255912 ~2018
1530161902871621...17042314 2025
15303825869930607651739912 ~2018
15304382942330608765884712 ~2018
15304711267130609422534312 ~2018
15304868483930609736967912 ~2018
15306841759130613683518312 ~2018
15307126591130614253182312 ~2018
15307749920330615499840712 ~2018
15309130196330618260392712 ~2018
15310058312330620116624712 ~2018
15311053969130622107938312 ~2018
1531205479971822...11643115 2024
15312792313130625584626312 ~2018
15312989089130625978178312 ~2018
15314364518330628729036712 ~2018
15314969456330629938912712 ~2018
Exponent Prime Factor Dig. Year
15315171949130630343898312 ~2018
15315230935130630461870312 ~2018
15315678943130631357886312 ~2018
15316605257930633210515912 ~2018
15320016851930640033703912 ~2018
15320547440330641094880712 ~2018
15322802882330645605764712 ~2018
15322894532330645789064712 ~2018
15323865938330647731876712 ~2018
15324804769130649609538312 ~2018
15326554937930653109875912 ~2018
15326867993930653735987912 ~2018
15327408302330654816604712 ~2018
15330639079130661278158312 ~2018
15331371197930662742395912 ~2018
15331397795930662795591912 ~2018
15332972909930665945819912 ~2018
15333987455930667974911912 ~2018
15334130828330668261656712 ~2018
15336203779130672407558312 ~2018
15338420336330676840672712 ~2018
15338823188330677646376712 ~2018
15339546722330679093444712 ~2018
15340117609130680235218312 ~2018
1534042494611285...04831915 2023
Home
4.828.532 digits
e-mail
25-06-01