Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15165697016330331394032712 ~2018
15166342808330332685616712 ~2018
15166437164330332874328712 ~2018
15166742909930333485819912 ~2018
15168045824330336091648712 ~2018
15169639088330339278176712 ~2018
15171565118330343130236712 ~2018
15172801484330345602968712 ~2018
15173856493130347712986312 ~2018
15174045884330348091768712 ~2018
15174222626330348445252712 ~2018
15175385989130350771978312 ~2018
15179691389930359382779912 ~2018
15181648195130363296390312 ~2018
15182243450330364486900712 ~2018
15183635420330367270840712 ~2018
15184324874330368649748712 ~2018
15185153174330370306348712 ~2018
15185195879930370391759912 ~2018
15187939910330375879820712 ~2018
15189459181130378918362312 ~2018
15189720617930379441235912 ~2018
15190175713130380351426312 ~2018
1519145597331102...36615915 2025
15191685986330383371972712 ~2018
Exponent Prime Factor Dig. Year
15192121079930384242159912 ~2018
15194312641130388625282312 ~2018
15197073596330394147192712 ~2018
15197517223130395034446312 ~2018
15198025013930396050027912 ~2018
15198081131930396162263912 ~2018
15198318323930396636647912 ~2018
15198401108330396802216712 ~2018
15199211777930398423555912 ~2018
15199685089130399370178312 ~2018
15200437556330400875112712 ~2018
15202091717930404183435912 ~2018
15202243685930404487371912 ~2018
1520277946438148...92864914 2023
15202848179930405696359912 ~2018
15204329522330408659044712 ~2018
15205619479130411238958312 ~2018
15206505476330413010952712 ~2018
15206662703930413325407912 ~2018
15207357605930414715211912 ~2018
15207880309130415760618312 ~2018
15208880225930417760451912 ~2018
15209406475130418812950312 ~2018
15209420203130418840406312 ~2018
15211857914330423715828712 ~2018
Exponent Prime Factor Dig. Year
15212695033130425390066312 ~2018
15212789773130425579546312 ~2018
15213074678330426149356712 ~2018
15213321734330426643468712 ~2018
15213530849930427061699912 ~2018
15213742343930427484687912 ~2018
15213791546330427583092712 ~2018
15213824117930427648235912 ~2018
15214740887930429481775912 ~2018
15214942553930429885107912 ~2018
15215429468330430858936712 ~2018
15216907777130433815554312 ~2018
15218906051930437812103912 ~2018
15219374645930438749291912 ~2018
15219841493930439682987912 ~2018
15220518145130441036290312 ~2018
15220810250330441620500712 ~2018
15222049819130444099638312 ~2018
15222224485130444448970312 ~2018
1522289756291187...09906314 2024
15222958418330445916836712 ~2018
15224731439930449462879912 ~2018
15225077876330450155752712 ~2018
15225448880330450897760712 ~2018
15225629053130451258106312 ~2018
Exponent Prime Factor Dig. Year
15225901049930451802099912 ~2018
15225924032330451848064712 ~2018
15226294304330452588608712 ~2018
15226396577930452793155912 ~2018
15228049081130456098162312 ~2018
15228074119130456148238312 ~2018
15228905945930457811891912 ~2018
15229436621930458873243912 ~2018
15230576288330461152576712 ~2018
15231846899930463693799912 ~2018
15232486429130464972858312 ~2018
15233716757930467433515912 ~2018
15234637849130469275698312 ~2018
15234699043130469398086312 ~2018
1523491624915515...82174314 2025
1523547813172407...44808714 2024
15236033551130472067102312 ~2018
15237396427130474792854312 ~2018
15238479566330476959132712 ~2018
15239539705130479079410312 ~2018
1524021779871792...31271315 2025
1524094605713779...22160914 2023
15241223888330482447776712 ~2018
15241718359130483436718312 ~2018
15241965422330483930844712 ~2018
Home
4.828.532 digits
e-mail
25-06-01