Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18477721616336955443232712 ~2019
18479120384336958240768712 ~2019
18479145481136958290962312 ~2019
18480599381936961198763912 ~2019
18481401155936962802311912 ~2019
18489443666336978887332712 ~2019
18490351808336980703616712 ~2019
18490680769136981361538312 ~2019
18491131849136982263698312 ~2019
18493050188336986100376712 ~2019
18493250053136986500106312 ~2019
18496699429136993398858312 ~2019
18499955750336999911500712 ~2019
1850014877873256...85051314 2024
18502467823137004935646312 ~2019
18504355807137008711614312 ~2019
18504971099937009942199912 ~2019
18505067558337010135116712 ~2019
1850677944533257...82372914 2024
18506993713137013987426312 ~2019
18508636447137017272894312 ~2019
18512281747137024563494312 ~2019
18513136045137026272090312 ~2019
18514924253937029848507912 ~2019
18515732588337031465176712 ~2019
Exponent Prime Factor Dig. Year
1851766477934851...72176714 2023
18519051677937038103355912 ~2019
18519281065137038562130312 ~2019
18521210333937042420667912 ~2019
18522249193137044498386312 ~2019
18524151443937048302887912 ~2019
18525120713937050241427912 ~2019
18525402578337050805156712 ~2019
18527303359137054606718312 ~2019
18527307905937054615811912 ~2019
18527401591137054803182312 ~2019
18528611543937057223087912 ~2019
18529062452337058124904712 ~2019
18530976365937061952731912 ~2019
18531197351937062394703912 ~2019
18532870982337065741964712 ~2019
18533681683137067363366312 ~2019
18535489205937070978411912 ~2019
18537005783937074011567912 ~2019
18537191987937074383975912 ~2019
18538058480337076116960712 ~2019
18538110445137076220890312 ~2019
18541243493937082486987912 ~2019
18541411043937082822087912 ~2019
18542306351937084612703912 ~2019
Exponent Prime Factor Dig. Year
18542812460337085624920712 ~2019
18543929131137087858262312 ~2019
18545315861937090631723912 ~2019
18546264836337092529672712 ~2019
18546717013137093434026312 ~2019
18546800033937093600067912 ~2019
18548469913137096939826312 ~2019
18548962811937097925623912 ~2019
18550770452337101540904712 ~2019
18552043352337104086704712 ~2019
18553388111937106776223912 ~2019
18554426297937108852595912 ~2019
18556628774337113257548712 ~2019
18556958471937113916943912 ~2019
18557315933937114631867912 ~2019
18558086833137116173666312 ~2019
18558431605137116863210312 ~2019
18558778997937117557995912 ~2019
18560226587937120453175912 ~2019
18561823241937123646483912 ~2019
18563153576337126307152712 ~2019
18563527183137127054366312 ~2019
18565559579937131119159912 ~2019
18568118768337136237536712 ~2019
1857231065993603...68020714 2024
Exponent Prime Factor Dig. Year
1857270490493380...92691914 2024
1857518476512972...62416114 2024
18575727715137151455430312 ~2019
18575746514337151493028712 ~2019
1857745940812244...64984915 2024
18577766852337155533704712 ~2019
18578208655137156417310312 ~2019
18578849729937157699459912 ~2019
18581294456337162588912712 ~2019
18583352630337166705260712 ~2019
1858400700491449...46382314 2024
18584143811937168287623912 ~2019
18586035859137172071718312 ~2019
18587862581937175725163912 ~2019
18589507481937179014963912 ~2019
18590008865937180017731912 ~2019
18590774792337181549584712 ~2019
18594295075137188590150312 ~2019
18599214728337198429456712 ~2019
18599823247137199646494312 ~2019
18600210917937200421835912 ~2019
18601784570337203569140712 ~2019
18602337602337204675204712 ~2019
18603394423137206788846312 ~2019
18605181319137210362638312 ~2019
Home
4.828.532 digits
e-mail
25-06-01