Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11644940456323289880912712 ~2017
11645714849923291429699912 ~2017
11646244892323292489784712 ~2017
11646419707123292839414312 ~2017
1164647193799654...65191115 2025
11647520330323295040660712 ~2017
11648052356323296104712712 ~2017
11648066205769888397234312 ~2019
11648112335923296224671912 ~2017
11649015110323298030220712 ~2017
11649560372323299120744712 ~2017
11649760364323299520728712 ~2017
11649780181123299560362312 ~2017
11650528967923301057935912 ~2017
11650882433923301764867912 ~2017
11651162951923302325903912 ~2017
11651175289369907051735912 ~2019
11651719835923303439671912 ~2017
11652370616323304741232712 ~2017
11652485366323304970732712 ~2017
11652749207923305498415912 ~2017
11654009395123308018790312 ~2017
11654074997369924449983912 ~2019
11654584495123309168990312 ~2017
11655863048323311726096712 ~2017
Exponent Prime Factor Dig. Year
11656069496323312138992712 ~2017
11656248692323312497384712 ~2017
11656396609123312793218312 ~2017
11656706336323313412672712 ~2017
11657250731923314501463912 ~2017
1165898295131147...24079315 2024
11659140467923318280935912 ~2017
11659789598323319579196712 ~2017
11660895391123321790782312 ~2017
11661522601123323045202312 ~2017
11662756844323325513688712 ~2017
11664504851923329009703912 ~2017
11664863097769989178586312 ~2019
11665459478323330918956712 ~2017
11665746137923331492275912 ~2017
11666902381123333804762312 ~2017
11667896636323335793272712 ~2017
11667956280170007737680712 ~2019
11668077949370008467695912 ~2019
11668282603123336565206312 ~2017
11668292732323336585464712 ~2017
11669340716323338681432712 ~2017
11669362423123338724846312 ~2017
11670527510323341055020712 ~2017
11671160641123342321282312 ~2017
Exponent Prime Factor Dig. Year
11671283258323342566516712 ~2017
1167161914431704...95067914 2024
11672399827123344799654312 ~2017
11673759073123347518146312 ~2017
11673759296323347518592712 ~2017
11673876854323347753708712 ~2017
11674447379923348894759912 ~2017
1167562265539153...61755314 2024
11676102305923352204611912 ~2017
11676908035770061448214312 ~2019
11679182537923358365075912 ~2017
11679283772323358567544712 ~2017
11679425733770076554402312 ~2019
11679601170170077607020712 ~2019
11680461515923360923031912 ~2017
11681069675923362139351912 ~2017
1168108522392803...53736114 2024
11681618405923363236811912 ~2017
11682607430323365214860712 ~2017
11683177073923366354147912 ~2017
11683321159123366642318312 ~2017
11683482945770100897674312 ~2019
11683507170170101043020712 ~2019
11683985839123367971678312 ~2017
11684283230323368566460712 ~2017
Exponent Prime Factor Dig. Year
11685671333923371342667912 ~2017
11686712413123373424826312 ~2017
11687002736323374005472712 ~2017
11687375893123374751786312 ~2017
11689007813923378015627912 ~2017
11689251905923378503811912 ~2017
11690180234323380360468712 ~2017
11691517033123383034066312 ~2017
11693371187923386742375912 ~2017
1169369041212221...78299114 2024
11693722061923387444123912 ~2017
11695037819923390075639912 ~2017
11695239341923390478683912 ~2017
1169608013036105...28016714 2024
11696499247123392998494312 ~2017
11697270851923394541703912 ~2017
11697398828323394797656712 ~2017
11697842419770187054518312 ~2019
11700953185123401906370312 ~2017
11701260436170207562616712 ~2019
11701976819923403953639912 ~2017
11702818177123405636354312 ~2017
11702911874323405823748712 ~2017
11703205739923406411479912 ~2017
11703815903923407631807912 ~2017
Home
4.933.056 digits
e-mail
25-07-20