Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16918895425133837790850312 ~2019
16919014013933838028027912 ~2019
16921889237933843778475912 ~2019
16921948880333843897760712 ~2019
16922885407133845770814312 ~2019
16923266599133846533198312 ~2019
16924405525133848811050312 ~2019
16924449839933848899679912 ~2019
16925475665933850951331912 ~2019
16927453369133854906738312 ~2019
16928619149933857238299912 ~2019
16929945692333859891384712 ~2019
16930393292333860786584712 ~2019
16930882568333861765136712 ~2019
16931371819133862743638312 ~2019
16931600239133863200478312 ~2019
16932836869133865673738312 ~2019
1693333951093115...70005714 2024
16934695121933869390243912 ~2019
16934832710333869665420712 ~2019
16936804298333873608596712 ~2019
16937799445133875598890312 ~2019
16939636142333879272284712 ~2019
16947422695133894845390312 ~2019
16947836353133895672706312 ~2019
Exponent Prime Factor Dig. Year
1694880104413932...42231314 2023
16948981165133897962330312 ~2019
16949151164333898302328712 ~2019
16950566269133901132538312 ~2019
16950773155133901546310312 ~2019
16951187444333902374888712 ~2019
1695222768412847...50928914 2024
16954165685933908331371912 ~2019
16954727042333909454084712 ~2019
1695481596611627...32745714 2025
1695483267371230...21106315 2025
16955584163933911168327912 ~2019
16955941883933911883767912 ~2019
16955980327133911960654312 ~2019
16956023612333912047224712 ~2019
16956033241133912066482312 ~2019
16956664199933913328399912 ~2019
16957090891133914181782312 ~2019
16957359038333914718076712 ~2019
16957698533933915397067912 ~2019
16958664236333917328472712 ~2019
16963366166333926732332712 ~2019
1696401592639533...50580714 2025
16964098232333928196464712 ~2019
16964363774333928727548712 ~2019
Exponent Prime Factor Dig. Year
16964562571133929125142312 ~2019
16966214011133932428022312 ~2019
16966393603133932787206312 ~2019
16968256633133936513266312 ~2019
16971108380333942216760712 ~2019
16971795002333943590004712 ~2019
16974910693133949821386312 ~2019
16976371436333952742872712 ~2019
16977084995933954169991912 ~2019
16979007755933958015511912 ~2019
16979802533933959605067912 ~2019
16980503342333961006684712 ~2019
16981710757133963421514312 ~2019
16982483393933964966787912 ~2019
16983697907933967395815912 ~2019
16983902647133967805294312 ~2019
16984089614333968179228712 ~2019
16985008237133970016474312 ~2019
16986380498333972760996712 ~2019
16987564085933975128171912 ~2019
16988811797933977623595912 ~2019
16989387188333978774376712 ~2019
16990176781133980353562312 ~2019
16990481233133980962466312 ~2019
1699094746613398...93220114 2024
Exponent Prime Factor Dig. Year
16991128676333982257352712 ~2019
16991152670333982305340712 ~2019
16991332825133982665650312 ~2019
16991570257133983140514312 ~2019
16992829178333985658356712 ~2019
16995607111133991214222312 ~2019
16995644384333991288768712 ~2019
16995765977933991531955912 ~2019
16996667269133993334538312 ~2019
16996833968333993667936712 ~2019
16997030099933994060199912 ~2019
16997156905133994313810312 ~2019
17000401979934000803959912 ~2019
17001461681934002923363912 ~2019
1700285153334998...50790314 2025
17004020545134008041090312 ~2019
17004637229934009274459912 ~2019
17004832511934009665023912 ~2019
17005646390334011292780712 ~2019
1700936712712891...11607114 2024
17010426341934020852683912 ~2019
17010779701134021559402312 ~2019
17012947298334025894596712 ~2019
17014151467134028302934312 ~2019
17015578453134031156906312 ~2019
Home
4.918.085 digits
e-mail
25-07-13