Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
39529972963179059945926312 ~2022
39532994845179065989690312 ~2022
39533860748379067721496712 ~2022
39536368973979072737947912 ~2022
39538170427179076340854312 ~2022
39538192609179076385218312 ~2022
39539691301179079382602312 ~2022
39544216190379088432380712 ~2022
39546895370379093790740712 ~2022
39549352778379098705556712 ~2022
3955048202814492...83921715 2025
39554440057179108880114312 ~2022
39556406947179112813894312 ~2022
39563388026379126776052712 ~2022
39566589980379133179960712 ~2022
39577129184379154258368712 ~2022
39580579265979161158531912 ~2022
39581995091979163990183912 ~2022
39584692091979169384183912 ~2022
39585975049179171950098312 ~2022
39588550435179177100870312 ~2022
39592878368379185756736712 ~2022
39593519029179187038058312 ~2022
39601404770379202809540712 ~2022
3960281338331164...34690315 2025
Exponent Prime Factor Dig. Year
39610847165979221694331912 ~2022
39616231493979232462987912 ~2022
39622537513179245075026312 ~2022
39623745044379247490088712 ~2022
39629909132379259818264712 ~2022
39644080039179288160078312 ~2022
39646783709979293567419912 ~2022
39651523340379303046680712 ~2022
39657183386379314366772712 ~2022
39658298729979316597459912 ~2022
39659083196379318166392712 ~2022
39659369623179318739246312 ~2022
39659447747979318895495912 ~2022
39662024375979324048751912 ~2022
39662028623979324057247912 ~2022
39665046767979330093535912 ~2022
39669210638379338421276712 ~2022
39670001473179340002946312 ~2022
39673946231979347892463912 ~2022
39676419164379352838328712 ~2022
39678115058379356230116712 ~2022
39689317855179378635710312 ~2022
39690923240379381846480712 ~2022
39693799361979387598723912 ~2022
39697718615979395437231912 ~2022
Exponent Prime Factor Dig. Year
39698318798379396637596712 ~2022
39699856604379399713208712 ~2022
39700793396379401586792712 ~2022
39711824935179423649870312 ~2022
39712508239179425016478312 ~2022
39719016947979438033895912 ~2022
39722174255979444348511912 ~2022
39726564770379453129540712 ~2022
39726839330379453678660712 ~2022
3972832430571430...50052115 2025
39733337810379466675620712 ~2022
39736147267179472294534312 ~2022
39739554107979479108215912 ~2022
39741080897979482161795912 ~2022
39751238642379502477284712 ~2022
39751898851179503797702312 ~2022
39755309797179510619594312 ~2022
39760215709179520431418312 ~2022
39775713803979551427607912 ~2022
39783085693179566171386312 ~2022
39790815023979581630047912 ~2022
39800203063179600406126312 ~2022
39800749724379601499448712 ~2022
39802282525179604565050312 ~2022
39808355219979616710439912 ~2022
Exponent Prime Factor Dig. Year
39814527829179629055658312 ~2022
39816287197179632574394312 ~2022
39819527681979639055363912 ~2022
39822686738379645373476712 ~2022
39825692647179651385294312 ~2022
39825959099979651918199912 ~2022
39827388374379654776748712 ~2022
39835071001179670142002312 ~2022
39837188867979674377735912 ~2022
39840502439979681004879912 ~2022
39852436825179704873650312 ~2022
39853668925179707337850312 ~2022
39858324427179716648854312 ~2022
39858642347979717284695912 ~2022
39861513613179723027226312 ~2022
39862102628379724205256712 ~2022
39863485790379726971580712 ~2022
39871330717179742661434312 ~2022
39873678781179747357562312 ~2022
39877260221979754520443912 ~2022
39878437129179756874258312 ~2022
39886546013979773092027912 ~2022
39893661131979787322263912 ~2022
39895544597979791089195912 ~2022
39899331521979798663043912 ~2022
Home
4.783.821 digits
e-mail
25-05-11