Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
410094779328075823310 ~2000
4101091318202182639 ~1998
4101176638202353279 ~1998
4101306598202613199 ~1998
410133137328106509710 ~2000
4101364918202729839 ~1998
4101368271066355750311 ~2001
4101517198203034399 ~1998
410179727984431344910 ~2001
410181647984435952910 ~2001
410182601246109560710 ~1999
4101889918203779839 ~1998
4101957838203915679 ~1998
4102120798204241599 ~1998
4102192798204385599 ~1998
4102470118204940239 ~1998
4102518238205036479 ~1998
4102645798205291599 ~1998
410265553902584216710 ~2001
4102903198205806399 ~1998
410296193574414670310 ~2000
4103031238206062479 ~1998
4103111831641244732111 ~2001
4103179918206359839 ~1998
410328601656525761710 ~2000
Exponent Prime Factor Digits Year
41034375115182718787112 ~2004
4103441398206882799 ~1998
4103625598207251199 ~1998
4103683191313178620911 ~2001
4103776318207552639 ~1998
410390623410390623110 ~2000
4103999398207998799 ~1998
410413537656661659310 ~2000
410416841246250104710 ~1999
4104259798208519599 ~1998
410426677246256006310 ~1999
410436619410436619110 ~2000
4104464998208929999 ~1998
4104569398209138799 ~1998
410464027985113664910 ~2001
4104686518209373039 ~1998
410473277328378621710 ~2000
4104857398209714799 ~1998
4104858118209716239 ~1998
410487557246292534310 ~1999
4104981118209962239 ~1998
4105071838210143679 ~1998
4105272238210544479 ~1998
4105349518210699039 ~1998
410535959738964726310 ~2001
Exponent Prime Factor Digits Year
410540653246324391910 ~1999
410544131328435304910 ~2000
4105488118210976239 ~1998
4105490638210981279 ~1998
410561597246336958310 ~1999
4105623718211247439 ~1998
410576549328461239310 ~2000
410580697246348418310 ~1999
4105835398211670799 ~1998
4105910398211820799 ~1998
4106054638212109279 ~1998
4106075038212150079 ~1998
410630771328504616910 ~2000
410640613657024980910 ~2000
410649047328519237710 ~2000
410667017246400210310 ~1999
4106886118213772239 ~1998
4106950918213901839 ~1998
4106991718213983439 ~1998
4107024718214049439 ~1998
410703947328563157710 ~2000
410705441246423264710 ~1999
4107096838214193679 ~1998
4107121198214242399 ~1998
4107334438214668879 ~1998
Exponent Prime Factor Digits Year
4107511632628807443311 ~2002
410755993246453595910 ~1999
4107650518215301039 ~1998
410776111410776111110 ~2000
410776727328621381710 ~2000
410805113246483067910 ~1999
410817193246490315910 ~1999
4108175518216351039 ~1998
410822213246493327910 ~1999
4108286998216573999 ~1998
4108305718216611439 ~1998
4108326838216653679 ~1998
410833589328666871310 ~2000
4108402318216804639 ~1998
4108405198216810399 ~1998
4108544038217088079 ~1998
4108555318217110639 ~1998
4108625038217250079 ~1998
4108661038217322079 ~1998
4108681198217362399 ~1998
4108761718217523439 ~1998
410884469575238256710 ~2000
410884961328707968910 ~2000
4108883638217767279 ~1998
4108933198217866399 ~1998
Home
4.933.056 digits
e-mail
25-07-20