Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3952619921323715719527912 ~2015
395294116437905882328711 ~2014
395297263437905945268711 ~2014
395332912437906658248711 ~2014
3953339136123720034816712 ~2015
395372635437907452708711 ~2014
3953760142131630081136912 ~2015
395379292797907585855911 ~2014
3953885968123723315808712 ~2015
395403505797908070115911 ~2014
395415703917908314078311 ~2014
3954165085723724990514312 ~2015
395427692637908553852711 ~2014
395433201117908664022311 ~2014
395463957117909279142311 ~2014
395519029797910380595911 ~2014
3955360823323732164939912 ~2015
395565124317911302486311 ~2014
395587291797911745835911 ~2014
395608968837912179376711 ~2014
395624656437912493128711 ~2014
395628780837912575616711 ~2014
395642369517912847390311 ~2014
395652443997913048879911 ~2014
3956913901131655311208912 ~2015
Exponent Prime Factor Dig. Year
3956950576123741703456712 ~2015
395718811197914376223911 ~2014
395759320797915186415911 ~2014
3957900360123747402160712 ~2015
3957983524131663868192912 ~2015
395802386997916047739911 ~2014
395813123397916262467911 ~2014
395819654997916393099911 ~2014
3958273644123749641864712 ~2015
395847036117916940722311 ~2014
3958588212123751529272712 ~2015
395863826037917276520711 ~2014
395865298917917305978311 ~2014
395909042637918180852711 ~2014
395909599797918191995911 ~2014
395931941397918638827911 ~2014
3959701595931677612767312 ~2015
395973193197919463863911 ~2014
3959760569931678084559312 ~2015
395983140837919662816711 ~2014
395999383317919987666311 ~2014
396041120397920822407911 ~2014
3960733393323764400359912 ~2015
396074790717921495814311 ~2014
396105721197922114423911 ~2014
Exponent Prime Factor Dig. Year
396131814237922636284711 ~2014
3961949280739619492807112 ~2015
396200047317924000946311 ~2014
396208493997924169879911 ~2014
396214628517924292570311 ~2014
396224577237924491544711 ~2014
3962789422339627894223112 ~2015
396284124597925682491911 ~2014
3963575243931708601951312 ~2015
396372289197927445783911 ~2014
396397687437927953748711 ~2014
396407021037928140420711 ~2014
396407522517928150450311 ~2014
396417743397928354867911 ~2014
3964326593323785959559912 ~2015
3964427064123786562384712 ~2015
396477319437929546388711 ~2014
396486001437929720028711 ~2014
396504088797930081775911 ~2014
396524550717930491014311 ~2014
396591906117931838122311 ~2014
396597934197931958683911 ~2014
3966450496731731603973712 ~2015
396682692717933653854311 ~2014
396696593037933931860711 ~2014
Exponent Prime Factor Dig. Year
396699221397933984427911 ~2014
396699975837933999516711 ~2014
396728701797934574035911 ~2014
396732260637934645212711 ~2014
396785129997935702599911 ~2014
3967868098339678680983112 ~2016
3968070961723808425770312 ~2015
396832313637936646272711 ~2014
396839913837936798276711 ~2014
396856566837937131336711 ~2014
396858084717937161694311 ~2014
396873533517937470670311 ~2014
3968827033723812962202312 ~2015
396889322332595...68038314 2024
396897244797937944895911 ~2014
396911396397938227927911 ~2014
3969137977323814827863912 ~2015
3969287966931754303735312 ~2015
3969313204131754505632912 ~2015
396934590837938691816711 ~2014
396948058317938961166311 ~2014
396972281997939445639911 ~2014
3969922048731759376389712 ~2015
397027531197940550623911 ~2014
397093210317941864206311 ~2014
Home
4.873.271 digits
e-mail
25-06-22