Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6944893000369448930003112 ~2017
6945009437913890018875912 ~2016
6945466189113890932378312 ~2016
6945489803913890979607912 ~2016
6945581699913891163399912 ~2016
6945716115741674296694312 ~2017
6945833971113891667942312 ~2016
6946344198141678065188712 ~2017
6946530938313893061876712 ~2016
6946772173113893544346312 ~2016
6947464213113894928426312 ~2016
6947484121113894968242312 ~2016
6947614127913895228255912 ~2016
6947778542313895557084712 ~2016
6947786607741686719646312 ~2017
6947820307113895640614312 ~2016
6948042739113896085478312 ~2016
6948145031913896290063912 ~2016
6949123610313898247220712 ~2016
6949129930755593039445712 ~2017
6949541969913899083939912 ~2016
6949709843913899419687912 ~2016
6950014531113900029062312 ~2016
6950020745913900041491912 ~2016
6950249897341701499383912 ~2017
Exponent Prime Factor Dig. Year
6950480521155603844168912 ~2017
6950604584955604836679312 ~2017
6952847777913905695555912 ~2016
695324049834964...15786314 2024
6953312689113906625378312 ~2016
6954336887913908673775912 ~2016
6954340536141726043216712 ~2017
695496329537678...78011314 2023
6955334744955642677959312 ~2017
6955649681913911299363912 ~2016
6955773155913911546311912 ~2016
6955875271969558752719112 ~2017
6956557237113913114474312 ~2016
6958422761955667382095312 ~2017
6958633271913917266543912 ~2016
6958945021113917890042312 ~2016
6959300711913918601423912 ~2016
6959626237113919252474312 ~2016
6959728277341758369663912 ~2017
6959814673113919629346312 ~2016
6959874137913919748275912 ~2016
6960000220369600002203112 ~2017
6960270127113920540254312 ~2016
6960493622313920987244712 ~2016
6960523907913921047815912 ~2016
Exponent Prime Factor Dig. Year
6961004881113922009762312 ~2016
6961307480313922614960712 ~2016
6961439645913922879291912 ~2016
6961449560313922899120712 ~2016
6961565294313923130588712 ~2016
6961748261913923496523912 ~2016
6961828865955694630927312 ~2017
6962896939113925793878312 ~2016
6962904787741777428726312 ~2017
6963062329113926124658312 ~2016
6963255463755706043709712 ~2017
6963839972313927679944712 ~2016
6963980900313927961800712 ~2016
6963981595113927963190312 ~2016
6964380143913928760287912 ~2016
6964600531113929201062312 ~2016
6964940918313929881836712 ~2016
6965604085113931208170312 ~2016
6965861083741795166502312 ~2017
6966093631341796561787912 ~2017
6966916775913933833551912 ~2016
6967121768313934243536712 ~2016
6967210553913934421107912 ~2016
6968090743113936181486312 ~2016
6968091283755744730269712 ~2017
Exponent Prime Factor Dig. Year
6968139134313936278268712 ~2016
6968345786955746766295312 ~2017
6968614111113937228222312 ~2016
6969135955755753087645712 ~2017
6969373496313938746992712 ~2016
6969561566313939123132712 ~2016
6969796030141818776180712 ~2017
6970207514313940415028712 ~2016
697081837812495...79359914 2023
6971400721113942801442312 ~2016
6971643217113943286434312 ~2016
6971669099955773352799312 ~2017
6971770520313943541040712 ~2016
6973082095341838492571912 ~2017
6973197181113946394362312 ~2016
6974665538313949331076712 ~2016
6974825426313949650852712 ~2016
6975325525113950651050312 ~2016
6975738611955805908895312 ~2017
6976297321113952594642312 ~2016
6976392456141858354736712 ~2017
697661489931622...87516716 2024
6976872649113953745298312 ~2016
6976938194313953876388712 ~2016
6977284591113954569182312 ~2016
Home
4.724.182 digits
e-mail
25-04-13