Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1126829613715611...76275914 2023
11268467183922536934367912 ~2017
11268748031922537496063912 ~2017
11269781405922539562811912 ~2017
11269826486322539652972712 ~2017
11270998622322541997244712 ~2017
11272057478322544114956712 ~2017
11272245551922544491103912 ~2017
11272251839922544503679912 ~2017
11272622779122545245558312 ~2017
11274273069767645638418312 ~2018
11274320174322548640348712 ~2017
11274917783922549835567912 ~2017
11275707913122551415826312 ~2017
11276684131122553368262312 ~2017
11276710193922553420387912 ~2017
11277515005122555030010312 ~2017
11277815437122555630874312 ~2017
1127806148332323...65559914 2024
11278715977767672295866312 ~2018
11280511387367683068323912 ~2019
11280555847122561111694312 ~2017
11280646439922561292879912 ~2017
11281008037122562016074312 ~2017
11281442285922562884571912 ~2017
Exponent Prime Factor Dig. Year
11281511639922563023279912 ~2017
11281974503922563949007912 ~2017
11282115745122564231490312 ~2017
11282967140322565934280712 ~2017
11283613741122567227482312 ~2017
11284823171922569646343912 ~2017
11287094156322574188312712 ~2017
11287268609922574537219912 ~2017
11287637011122575274022312 ~2017
11288009666322576019332712 ~2017
11288646668322577293336712 ~2017
11289686272167738117632712 ~2019
11290492543122580985086312 ~2017
11291187949122582375898312 ~2017
11291327216322582654432712 ~2017
1129177868872529...26268914 2024
11291803801122583607602312 ~2017
11291978203367751869219912 ~2019
11291999405922583998811912 ~2017
11292696788322585393576712 ~2017
11292990533922585981067912 ~2017
11293061051922586122103912 ~2017
11293170849767759025098312 ~2019
11293845857922587691715912 ~2017
11294611421922589222843912 ~2017
Exponent Prime Factor Dig. Year
1129538689191174...36757714 2024
1129596287813049...77087114 2024
11297257730322594515460712 ~2017
11297450947122594901894312 ~2017
11297759863122595519726312 ~2017
11297994164322595988328712 ~2017
11298295142322596590284712 ~2017
1129830668532892...11436914 2024
11298731069922597462139912 ~2017
11299205186322598410372712 ~2017
11299765202322599530404712 ~2017
11301195644322602391288712 ~2017
11302206005922604412011912 ~2017
11303914295922607828591912 ~2017
11306554771122613109542312 ~2017
11306727458322613454916712 ~2017
11307631273122615262546312 ~2017
11308243481367849460887912 ~2019
11308372957367850237743912 ~2019
11308546904322617093808712 ~2017
11309499025122618998050312 ~2017
11309886209922619772419912 ~2017
11310139867122620279734312 ~2017
11311676486322623352972712 ~2017
11312057309922624114619912 ~2017
Exponent Prime Factor Dig. Year
11312248160322624496320712 ~2017
11312807885922625615771912 ~2017
11313016793922626033587912 ~2017
11313129416322626258832712 ~2017
11313475365767880852194312 ~2019
1131361909133959...81955114 2023
11313975824322627951648712 ~2017
11315001137922630002275912 ~2017
11315732576322631465152712 ~2017
11315865085122631730170312 ~2017
11316515591922633031183912 ~2017
11317103447922634206895912 ~2017
11317919090322635838180712 ~2017
11318394929367910369575912 ~2019
11319582727367917496363912 ~2019
11320562786322641125572712 ~2017
11321751278322643502556712 ~2017
11324802665367948815991912 ~2019
11325827863122651655726312 ~2017
11325868531122651737062312 ~2017
11326867024167961202144712 ~2019
11327060747922654121495912 ~2017
11327205611922654411223912 ~2017
11328219775122656439550312 ~2017
11328972563922657945127912 ~2017
Home
4.724.182 digits
e-mail
25-04-13