Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6048913907912097827815912 ~2015
6049030825112098061650312 ~2015
6049200289112098400578312 ~2015
6049601495912099202991912 ~2015
6049672265912099344531912 ~2015
6049874651912099749303912 ~2015
6050076131912100152263912 ~2015
6050894345912101788691912 ~2015
6051001925912102003851912 ~2015
6051064201112102128402312 ~2015
6051892619912103785239912 ~2015
6052058462312104116924712 ~2015
6052589671960525896719112 ~2017
6053181006136319086036712 ~2016
6053204279912106408559912 ~2015
6053353979912106707959912 ~2015
6053561254136321367524712 ~2016
6053623730948428989847312 ~2017
6054566096312109132192712 ~2015
6054913739912109827479912 ~2015
6055036219336330217315912 ~2016
6055122131948440977055312 ~2017
6055280449112110560898312 ~2015
6055560055736333360334312 ~2016
6055590350312111180700712 ~2015
Exponent Prime Factor Dig. Year
6055702105112111404210312 ~2015
6055813324360558133243112 ~2017
6056019977336336119863912 ~2016
6056201636312112403272712 ~2015
6056380897112112761794312 ~2015
6057049387736342296326312 ~2016
6057063215912114126431912 ~2015
6057151819112114303638312 ~2015
6057345605912114691211912 ~2015
6057361965736344171794312 ~2016
6057728641736346371850312 ~2016
6057831348760578313487112 ~2017
6057896383112115792766312 ~2015
6058021361912116042723912 ~2015
6058077657736348465946312 ~2016
6058330763912116661527912 ~2015
6058582064312117164128712 ~2015
6059095940948472767527312 ~2017
6059096551112118193102312 ~2015
6059244368312118488736712 ~2015
6059525973736357155842312 ~2016
6059550989336357305935912 ~2016
6060191705912120383411912 ~2015
6060399949336362399695912 ~2016
6061009729112122019458312 ~2015
Exponent Prime Factor Dig. Year
6061046366312122092732712 ~2015
6062123883736372743302312 ~2016
6062149613912124299227912 ~2015
6062766986312125533972712 ~2015
6063153752312126307504712 ~2015
6063299586760632995867112 ~2017
606371720875297...35203315 2025
606388150633310...02439914 2023
6064114575160641145751112 ~2017
6064506284312129012568712 ~2015
6065055361112130110722312 ~2015
6065104151912130208303912 ~2015
6065211281912130422563912 ~2015
6065490187112130980374312 ~2015
6065576738312131153476712 ~2015
6066264347948530114783312 ~2017
6066287435336397724611912 ~2016
6066383477912132766955912 ~2015
6066672872312133345744712 ~2015
606717744791601...46245714 2023
606722332574647...67486314 2023
6067710332312135420664712 ~2015
6068027514136408165084712 ~2016
6068307626312136615252712 ~2015
6068674331912137348663912 ~2015
Exponent Prime Factor Dig. Year
6068871484136413228904712 ~2016
6069306319148554450552912 ~2017
6069401923736416411542312 ~2016
6069423715148555389720912 ~2017
6069838933112139677866312 ~2015
6070410577112140821154312 ~2015
6070961929112141923858312 ~2015
6071055835112142111670312 ~2015
6071295247148570361976912 ~2017
6071344381112142688762312 ~2015
6071618920748572951365712 ~2017
6071621587336429729523912 ~2016
6071880014312143760028712 ~2015
6071947256312143894512712 ~2015
6071984732312143969464712 ~2015
6072164554148577316432912 ~2017
6072286459112144572918312 ~2015
6072941606312145883212712 ~2015
6072988051112145976102312 ~2015
6073052672312146105344712 ~2015
6073376888312146753776712 ~2015
6073555111336441330667912 ~2016
6073847844760738478447112 ~2017
6073903619912147807239912 ~2015
6073997033912147994067912 ~2015
Home
4.933.056 digits
e-mail
25-07-20