Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
21089237312342178474624712 ~2019
21092130488342184260976712 ~2019
21092538125942185076251912 ~2019
21093388334342186776668712 ~2019
21095023865942190047731912 ~2019
21095518855142191037710312 ~2019
21096577867142193155734312 ~2019
2110115846214684...78586314 2023
21101212931942202425863912 ~2019
21103427276342206854552712 ~2019
21103530775142207061550312 ~2019
21106020697142212041394312 ~2019
21106176995942212353991912 ~2019
21106350061142212700122312 ~2019
21106503769142213007538312 ~2019
21107514725942215029451912 ~2019
21107915798342215831596712 ~2019
21109556639942219113279912 ~2019
21112304641142224609282312 ~2019
21112870655942225741311912 ~2019
21113944811942227889623912 ~2019
21114032953142228065906312 ~2019
21114353432342228706864712 ~2019
21114616100342229232200712 ~2019
21115200446342230400892712 ~2019
Exponent Prime Factor Dig. Year
21116029729142232059458312 ~2019
21116815247942233630495912 ~2019
21118105393142236210786312 ~2019
21121006754342242013508712 ~2019
2112203939212703...42188914 2024
21123730280342247460560712 ~2019
21124708382342249416764712 ~2019
2112653204637478...44390314 2023
21128233022342256466044712 ~2019
21130549123142261098246312 ~2019
2113429914491648...33302314 2024
21134677115942269354231912 ~2019
21135321974342270643948712 ~2019
21136957496342273914992712 ~2019
21138666613142277333226312 ~2019
21139784012342279568024712 ~2019
21141670238342283340476712 ~2019
21145874071142291748142312 ~2019
21148675076342297350152712 ~2019
21151465943942302931887912 ~2019
21156980114342313960228712 ~2019
21157908877142315817754312 ~2019
21158019626342316039252712 ~2019
2115841740733512...89611914 2024
2115904043092708...75155314 2024
Exponent Prime Factor Dig. Year
21164431489142328862978312 ~2019
21164440004342328880008712 ~2019
21165117553142330235106312 ~2019
21165731834342331463668712 ~2019
21167526398342335052796712 ~2019
21170520698342341041396712 ~2019
21171601429142343202858312 ~2019
21175815149942351630299912 ~2019
21176318549942352637099912 ~2019
21179545151942359090303912 ~2019
21181276375142362552750312 ~2019
21182065361942364130723912 ~2019
21182367395942364734791912 ~2019
21182888042342365776084712 ~2019
21183717149942367434299912 ~2019
21186831155942373662311912 ~2019
2118894727572500...78532714 2024
21190790825942381581651912 ~2019
21191534129942383068259912 ~2019
2119173819432543...83316114 2024
21192939008342385878016712 ~2019
21193670984342387341968712 ~2019
21195804539942391609079912 ~2019
21196489573142392979146312 ~2019
21197245835942394491671912 ~2019
Exponent Prime Factor Dig. Year
21200545121942401090243912 ~2019
21203815675142407631350312 ~2019
21204039017942408078035912 ~2019
21204321524342408643048712 ~2019
21207209603942414419207912 ~2019
21208847371142417694742312 ~2019
21209342923142418685846312 ~2019
21211903448342423806896712 ~2019
2121305474815260...77528914 2024
21213785237942427570475912 ~2019
21215449255142430898510312 ~2019
21215474251142430948502312 ~2019
21217883930342435767860712 ~2019
21220591184342441182368712 ~2019
21221804453942443608907912 ~2019
21222284215142444568430312 ~2019
21222314399942444628799912 ~2019
21224730163142449460326312 ~2019
21224903719142449807438312 ~2019
21225082931942450165863912 ~2019
21226320619142452641238312 ~2019
21227077586342454155172712 ~2019
21228375655142456751310312 ~2019
21230744558342461489116712 ~2019
21231621523142463243046312 ~2019
Home
4.724.182 digits
e-mail
25-04-13