Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11965024838323930049676712 ~2018
11965177715923930355431912 ~2018
11965213931923930427863912 ~2018
11965497229123930994458312 ~2018
11966107682323932215364712 ~2018
11966454989923932909979912 ~2018
11966787662323933575324712 ~2018
11969849168323939698336712 ~2018
11970373253923940746507912 ~2018
11970530258323941060516712 ~2018
11970554902171823329412712 ~2019
11970740083123941480166312 ~2018
11971083139123942166278312 ~2018
11971224233923942448467912 ~2018
11971934210323943868420712 ~2018
11972397845923944795691912 ~2018
11973001481923946002963912 ~2018
11974560137923949120275912 ~2018
11975065801123950131602312 ~2018
11975542982323951085964712 ~2018
11976329191123952658382312 ~2018
11976963341923953926683912 ~2018
11977016462323954032924712 ~2018
11977224373771863346242312 ~2019
11977449479923954898959912 ~2018
Exponent Prime Factor Dig. Year
11977608007123955216014312 ~2018
11978135174323956270348712 ~2018
1197972031091233...20227115 2023
11979737677123959475354312 ~2018
11980734747771884408486312 ~2019
11981432528323962865056712 ~2018
11983636603123967273206312 ~2018
11986602470323973204940712 ~2018
11987327698171923966188712 ~2019
11987402491123974804982312 ~2018
11987736739123975473478312 ~2018
11987903468323975806936712 ~2018
11989165615123978331230312 ~2018
11989504664323979009328712 ~2018
11989767881923979535763912 ~2018
11990112524323980225048712 ~2018
11990257433923980514867912 ~2018
1199265650292878...60696114 2024
11994224304171965345824712 ~2019
11995460423923990920847912 ~2018
11995860146323991720292712 ~2018
11995922074171975532444712 ~2019
11996071021123992142042312 ~2018
11997436465123994872930312 ~2018
11997557072323995114144712 ~2018
Exponent Prime Factor Dig. Year
11999367656323998735312712 ~2018
11999575049923999150099912 ~2018
11999623736323999247472712 ~2018
11999735556171998413336712 ~2019
12000567883372003407299912 ~2019
12001127398172006764388712 ~2019
12002575910324005151820712 ~2018
1200309662279818...37368714 2025
12003394705772020368234312 ~2019
12003538010324007076020712 ~2018
12003736465124007472930312 ~2018
12004262611124008525222312 ~2018
12005248466324010496932712 ~2018
12006783541772040701250312 ~2019
12007670045924015340091912 ~2018
12008317591124016635182312 ~2018
12008390816324016781632712 ~2018
12008625637372051753823912 ~2019
12008698471124017396942312 ~2018
12009854417924019708835912 ~2018
12010538023124021076046312 ~2018
12010594219372063565315912 ~2019
12010643459924021286919912 ~2018
12013151756324026303512712 ~2018
12013185944324026371888712 ~2018
Exponent Prime Factor Dig. Year
12013991381924027982763912 ~2018
12016356490172098138940712 ~2019
12016501424324033002848712 ~2018
12018495109124036990218312 ~2018
12019004707772114028246312 ~2019
12020032994324040065988712 ~2018
12020140915124040281830312 ~2018
12020267725124040535450312 ~2018
12023268506324046537012712 ~2018
12023334878324046669756712 ~2018
12024078764324048157528712 ~2018
12024166709924048333419912 ~2018
12024366553372146199319912 ~2019
12024660014324049320028712 ~2018
12024885618172149313708712 ~2019
12025088881124050177762312 ~2018
1202540862373655...21604914 2024
12025739263124051478526312 ~2018
12025794731924051589463912 ~2018
12025954913924051909827912 ~2018
12027027302324054054604712 ~2018
12027675365924055350731912 ~2018
12027711823124055423646312 ~2018
12028280027924056560055912 ~2018
12030817831124061635662312 ~2018
Home
4.828.532 digits
e-mail
25-06-01