Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13670795405927341590811912 ~2018
13670845271927341690543912 ~2018
13672732916327345465832712 ~2018
13673968475927347936951912 ~2018
1367505674894895...16106314 2024
13675076723927350153447912 ~2018
13675581443927351162887912 ~2018
13677207626327354415252712 ~2018
13678612063127357224126312 ~2018
13678737761927357475523912 ~2018
13679021215127358042430312 ~2018
13679035903127358071806312 ~2018
13681802021927363604043912 ~2018
13682966275127365932550312 ~2018
13685067745127370135490312 ~2018
13686558440327373116880712 ~2018
13690171721927380343443912 ~2018
13691372294327382744588712 ~2018
13694538986327389077972712 ~2018
13695067667927390135335912 ~2018
13696666523927393333047912 ~2018
13696977584327393955168712 ~2018
13697249354327394498708712 ~2018
13697571965927395143931912 ~2018
13697772025127395544050312 ~2018
Exponent Prime Factor Dig. Year
13697819816327395639632712 ~2018
13700840933927401681867912 ~2018
13701331111127402662222312 ~2018
13701734888327403469776712 ~2018
1370221956312767...51746314 2024
13702391675927404783351912 ~2018
13705166471927410332943912 ~2018
13705499569127410999138312 ~2018
13706297837927412595675912 ~2018
13707542941127415085882312 ~2018
13707770960327415541920712 ~2018
13707775061927415550123912 ~2018
1370851299133509...25772914 2023
13708927787927417855575912 ~2018
13711556300327423112600712 ~2018
13712635394327425270788712 ~2018
13714396484327428792968712 ~2018
13715610319127431220638312 ~2018
13718499470327436998940712 ~2018
13718632400327437264800712 ~2018
13719211334327438422668712 ~2018
13720591082327441182164712 ~2018
13721405461127442810922312 ~2018
13722031007927444062015912 ~2018
13723497980327446995960712 ~2018
Exponent Prime Factor Dig. Year
1372466352312854...12804914 2024
13724862521927449725043912 ~2018
13726253600327452507200712 ~2018
1372669603012717...13959914 2024
1372705709778236...58620114 2023
13730853923927461707847912 ~2018
13731942119927463884239912 ~2018
13734282307127468564614312 ~2018
13734927503927469855007912 ~2018
13735085515127470171030312 ~2018
13735109773127470219546312 ~2018
13736555213927473110427912 ~2018
13737819245927475638491912 ~2018
13738100075927476200151912 ~2018
13738996711127477993422312 ~2018
13739126989127478253978312 ~2018
1373979245512335...17367114 2024
13742006693927484013387912 ~2018
13742945822327485891644712 ~2018
13747115821127494231642312 ~2018
13747659247127495318494312 ~2018
13748066795927496133591912 ~2018
13748470261127496940522312 ~2018
13748767478327497534956712 ~2018
13749490226327498980452712 ~2018
Exponent Prime Factor Dig. Year
1374988586411539...16779314 2025
13752591451127505182902312 ~2018
13753911829127507823658312 ~2018
13753929002327507858004712 ~2018
13754224321127508448642312 ~2018
13754252408327508504816712 ~2018
13754516009927509032019912 ~2018
13754697811127509395622312 ~2018
13754795216327509590432712 ~2018
13755176701127510353402312 ~2018
13756025723927512051447912 ~2018
13756475317127512950634312 ~2018
13757092499927514184999912 ~2018
13757367074327514734148712 ~2018
13758653504327517307008712 ~2018
13759826569127519653138312 ~2018
13761325811927522651623912 ~2018
13763038649927526077299912 ~2018
13763106710327526213420712 ~2018
13763306594327526613188712 ~2018
13763970560327527941120712 ~2018
13764131683127528263366312 ~2018
13764768577127529537154312 ~2018
13765096115927530192231912 ~2018
13766764801127533529602312 ~2018
Home
4.828.532 digits
e-mail
25-06-01